Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[115600] Artykuł:

Fast and Efficient Method for Optical Coherence Tomography Images Classification Using Deep Learning Approach

Czasopismo: Sensors   Tom: 22, Zeszyt: 13, Strony: 4675
ISSN:  1424-8220
Opublikowano: Czerwiec 2022
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Kian Ara Rouhollah Niespoza "N" jednostki017.00.00  
Andrzej Matiolański Niespoza "N" jednostki017.00.00  
Andrzej Dziech Niespoza "N" jednostki017.00.00  
Remigiusz Baran orcid logo WEAiIKatedra Informatyki, Elektroniki i Elektrotechniki *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne17100.00100.00  
Paweł Domin Niespoza "N" jednostki017.00.00  
Adam Wieczorkiewicz Niespoza "N" jednostki017.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

artificial neural networks  biomedical imaging  image analysis  optical coherence tomography  oct  convolutional neural network 



Abstract:

The use of optical coherence tomography (OCT) in medical diagnostics is now common. The growing amount of data leads us to propose an automated support system for medical staff. The key part of the system is a classification algorithm developed with modern machine learning techniques. The main contribution is to present a new approach for the classification of eye diseases using the convolutional neural network model. The research concerns the classification of patients on the basis of OCT B-scans into one of four categories: Diabetic Macular Edema (DME), Choroidal Neovascularization (CNV), Drusen, and Normal. Those categories are available in a publicly available dataset of above 84,000 images utilized for the research. After several tested architectures, our 5-layer neural network gives us a promising result. We compared them to the other available solutions which proves the high quality of our algorithm. Equally important for the application of the algorithm is the computational time, which is reduced by the limited size of the model. In addition, the article presents a detailed method of image data augmentation and its impact on the classification results. The results of the experiments were also presented for several derived models of convolutional network architectures that were tested during the research. Improving processes in medical treatment is important. The algorithm cannot replace a doctor but, for example, can be a valuable tool for speeding up the process of diagnosis during screening tests.



B   I   B   L   I   O   G   R   A   F   I   A
1. Krause, J. Gulshan, V. Rahimy, E. Karth, P. Widner, K. Corrado, G.S. Peng, L. Webster, D.R. Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. Ophthalmology 2018, 125, 1264–1272.
2. Edison Artificial Intelligence Analytics. GE Healthcare (United States). Available online: https://www.gehealthcare.com/products/edison (accessed on 1 May 2022).
3. García, P.H. Simunic, D. Regulatory Framework of Artificial Intelligence in Healthcare. In Proceedings of the 2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27 September–1 October 2021 pp. 1052–1057.
4. Pesapane, F. Codari, M. Sardanelli, F. Artificial intelligence in medical imaging: Threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur. Radiol. Exp. 2018, 2, 35.
5. Trichonas, G. Kaiser, P.K. Optical coherence tomography imaging of macular oedema. Br. J. Ophthalmol. 2014, 98, ii24–ii29.
6. Stahl, A. The Diagnosis and Treatment of Age-Related Macular Degeneration. Dtsch. Arztebl. Int. 2020, 117, 513–520.
7. Kermany, D. Goldbaum, M. Cai,W. Valentim, C. Liang, H.Y. Baxter, S. McKeown, A. Yang, G. Wu, X. Yan, F. et al. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9.
8. Sánchez Brea, L. Andrade De Jesus, D. Shirazi, M.F. Pircher, M. van Walsum, T. Klein, S. Review on Retrospective Procedures to Correct Retinal Motion Artefacts in OCT Imaging. Appl. Sci. 2019, 9, 2700.
9. Phadikar, S. Sinha, N. Ghosh, R. Ghaderpour, E. Automatic Muscle Artifacts Identification and Removal from Single-Channel EEG Using Wavelet Transform with meta-Heuristically Optimized Non-Local Means Filter. Sensors 2022, 22, 2948.
10. Ahmad, M. Qadri, S.F. Qadri, S. Saeed, I.A. Zareen, S.S. Iqbal, Z. Alabrah, A. Alaghbari, H.M. Mizanur Rahman, S.M. A Lightweight Convolutional Neural Network Model for Liver Segmentation in Medical Diagnosis. Comput. Intell. Neurosci. 2022, 2022, 7954333.
11. Qadri, S.F. Shen, L. Ahmad, M. Qadri, S. Zareen, S.S. Khan, S. OP-convNet: A Patch Classification-Based Framework for CT Vertebrae Segmentation. IEEE Access 2021, 9, 158227–158240.
12. Ahmed, M.Z.I. Sinha, N. Phadikar, S. Ghaderpour, E. Automated Feature Extraction on AsMap for Emotion Classification Using EEG. Sensors 2022, 22, 2346.
13. Zhang, R. Xu, L. Yu, Z. Shi, Y. Mu, C. Xu,M. Deep-IRTarget: An Automatic Target Detector in Infrared Imagery Using Dual-Domain Feature Extraction and Allocation. IEEE Trans. Multimed. 2022, 24, 1735–1749.
14. Ran, A. Cheung, C.Y. Deep Learning-Based Optical Coherence Tomography and Optical Coherence Tomography Angiography Image Analysis: An Updated Summary. Asia-Pac. J. Ophthalmol. 2021, 10, 3.
15. Schmidt-Erfurth, U. Sadeghipour, A. Gerendas, B.S. Waldstein, S.M. Bogunovi´c, H. Artificial intelligence in retina. Prog. Retin. Eye Res. 2018, 67, 1–29.
16. Ting, D.S.W. Pasquale, L.R. Peng, L. Campbell, J.P. Lee, A.Y. Raman, R. Tan, G.S.W. Schmetterer, L. Keane, P.A. Wong, T.Y. Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 2019, 103, 167–175.
17. Lee, C.S. Baughman, D.M. Lee, A.Y. Deep Learning Is Effective for Classifying Normal versus Age-Related Macular Degeneration OCT Images. Ophthalmol. Retin. 2017, 1, 322–327.
18. Seeböck, P. Waldstein, S.M. Klimscha, S. Bogunovic, H. Schlegl, T. Gerendas, B.S. Donner, R. Schmidt-Erfurth, U. Langs, G. Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data. IEEE Trans. Med. Imaging 2019, 38, 1037–1047.
19. Huang, L. He, X. Fang, L. Rabbani, H. Chen, X. Automatic Classification of Retinal Optical Coherence Tomography Images With Layer Guided Convolutional Neural Network. IEEE Signal Process. Lett. 2019, 26, 1026–1030.
20. Chowdhary, C.L. Acharjya, D. Clustering Algorithm in Possibilistic Exponential Fuzzy C-Mean Segmenting Medical Images. J. Biomimetics Biomater. Biomed. Eng. 2017, 30, 12–23.
21. Chowdhary, C.L. Acharjya, D.P. Segmentation of Mammograms Using a Novel Intuitionistic Possibilistic Fuzzy C-Mean Clustering Algorithm. In Nature Inspired Computing
Panigrahi, B.K., Hoda, M.N., Sharma, V., Goel, S., Eds. Springer: Singapore, 2018 pp. 75–82.
22. Das, V. Dandapat, S. Bora, P. Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images. Biomed. Signal Process. Control 2019, 54, 101605.
23. Hwang, D.K. Hsu, C.C. Chang, K.J. Chao, D. Sun, C.H. Jheng, Y.C. Yarmishyn, A.A.Wu, J.C. Tsai, C.Y.Wang, M.L. et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics 2019, 9, 232–245.
24. Tasnim, N. Hasan, M. Islam, I. Comparisonal study of Deep Learning approaches on Retinal OCT Image. arXiv 2019, arXiv:19 2.07783.
25. Kaymak, S. Serener, A. Automated Age-Related Macular Degeneration and Diabetic Macular Edema Detection on OCT Images using Deep Learning. In Proceedings of the 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania, 6–8 September 2018 pp. 265–269.
26. Li, F. Chen, H. Liu, Z. dian Zhang, X. shan Jiang, M. zheng Wu, Z. qian Zhou, K. Deep learning-based automated detection of retinal diseases using optical coherence tomography images. Biomed. Opt. Express 2019, 10, 6204–6226.
27. Lo, Y.C. Lin, K.H. Bair, H. Sheu, W.H.H. Chang, C.S. Shen, Y.C. Hung, C.L. Epiretinal Membrane Detection at the Ophthalmologist Level using Deep Learning of Optical Coherence Tomography. Sci. Rep. 2020, 10, 8424.
28. Tsuji, T. Hirose, Y. Fujimori, K. Hirose, T. Oyama, A. Saikawa, Y. Mimura, T. Shiraishi, K. Kobayashi, T. Mizota, A. et al. Classification of optical coherence tomography images using a capsule network. BMC Ophthalmol. 2020, 20, 114.
29. Prabhakaran, S. Kar, S. Sai Venkata, G. Gopi, V. Ponnusamy, P. OctNET: A Lightweight CNN for Retinal Disease Classification from Optical Coherence Tomography Images. Comput. Methods Programs Biomed. 2020, 200, 105877.
30. Shorten, C. Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60.
31. Rosebrock, A. MiniVGGNet: Going Deeper with CNNs. 2021. Available online: https://pyimagesearch.com/2021/05/22/minivggnet-going-deeper-with-cnns (accessed on 1 May 2022).
32. Simonyan, K. Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
33. Panahi, A.H. Rafiei, A. Rezaee, A. FCOD: Fast COVID-19 Detector based on deep learning techniques. Inform. Med. Unlocked 2021, 22, 100506.
34. Chi-Feng, W. A Basic Introduction to Separable Convolutions. 2018. Available online: https://towardsdatascience.com/a-basicintroduction-to-separable-convolutions-b99ec3102728 (accessed on 1 May 2022).
35. Selvaraju, R.R. Das, A. Vedantam, R. Cogswell, M. Parikh, D. Batra, D. Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization. arXiv 2016, arXiv:1611.07450.
36. Weiss, G. Mining with rarity: A unifying framework. SIGKDD Explor. 2004, 6, 7–19.
37. Espíndola, R. Ebecken, N. On extending f-measure and g-mean metrics to multi-class problems. WIT Trans. Inf. Commun. Technol. 2005, 35, 25–34.
38. Vakili, M. Ghamsari, M. Rezaei, M. Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT Data Classification. arXiv 2020, arXiv:2001.09636.
39. Kulkarni, A. Chong, D. Batarseh, F.A. 5-Foundations of data imbalance and solutions for a data democracy. In Data Democracy Batarseh, F.A., Yang, R., Eds. Academic Press: Cambridge, MA, USA, 2020 pp. 83–106.
40. Stockman, G. Shapiro, L.G. Computer Vision Prentice Hall PTR: Upper Saddle River, NJ, USA, 2001.
41. Wikipedia Contributors. Gaussian Blur—Wikipedia, The Free Encyclopedia 2022. Available online: https://en.wikipedia.org/wiki/Gaussian_blur (accessed on 3 May 2022).
42. Selvaraju, R.R. Cogswell, M. Das, A. Vedantam, R. Parikh, D. Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017 pp. 618–626.
43. Paradisa, R.H. Bustamam, A. Victor, A.A. Yudantha, A.R. Sarwinda, D. Diabetic Retinopathy Detection using Deep Convolutional Neural Network with Visualization of Guided Grad-CA. In Proceedings of the 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), Depok, Indonesia, 14–15 September 2021 pp. 19–24.
44. Pinciroli Vago, N.O. Milani, F. Fraternali, P. da Silva Torres, R. Comparing CAM Algorithms for the Identification of Salient Image Features in Iconography Artwork Analysis. J. Imaging 2021, 7, 106.