Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[116390] Artykuł:

Solid-Rotor Induction Motor Modeling Based on Circuit Model Utilizing Fractional-Order Derivatives

(Modelowanie silnika indukcyjnego z litym wirnikiem na podstawie modelu obwodowego o pochodnych ułamkowego rzędu.)
Czasopismo: Energies  
ISSN:  1996-1073
Opublikowano: Sierpień 2022
Liczba arkuszy wydawniczych:  0.11
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jan Staszak orcid logo WEAiIKatedra Energetyki, Energoelektroniki i Maszyn Elektrycznych *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne100140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

Silnik indukcyjny  wirnik lity  identyfikacja parametrów  metoda elementów skończonych  pochodne ułamkowe rzędu  impedancja ułamkowego rzędu 


Keywords:

induction motor  solid rotor  parameter identification  finite element method  fractional-order  derivatives  fractional-order impedance 



Streszczenie:

W pracy przedstawiono model Parka silnika indukcyjnego z litym wirnikiem. W modelu tym stan elektrodynamiczny silnika opisują równania różniczkowe o pochodnych całkowitego i niecałkowitego rzędu. Efekt naskórkowości w litym wirniku odwzorowano za pomocą rezystancji i indukcyjności o stałych wartościach oraz indukcyjności ułamkowego rzędu zależnej od częstotliwości indukowanych prądów wirowych. Parametry schematu zastępczego wyznaczono metodą częstotliwościową przy nieruchomej maszynie na podstawie analizy pola elektromagnetycznego metodą elementów skończonych. Na podstawie obliczonych parametrów przeprowadzono symulację stanów dynamicznych silnika indukcyjnego z litym wirnikiem. Uzyskano dobrą zgodność między wynikami obliczonymi z rozkładu pola magnetycznego metodą elementów skończonych a wynikami otrzymanymi na podstawie schematu zastępczego oraz w przypadku momentu elektromagnetycznego z wynikami otrzymanymi ze stanu nieustalonego podczas nawrotu silnika.




Abstract:

This paper presents the Park model of a solid-rotor induction motor. In this model, the
dynamic state of the motor is described by integer and noninteger order differential equations. The
skin effect in the solid rotor was represented by resistance and inductance with lumped constants, and
the fractional inductance was dependent on the frequency of the eddy current induced in the rotor.
The parameters of the equivalent circuit were determined by the standstill frequency response test
with the stationary machine on the basis of the finite element method analysis of the electromagnetic
field. A simulation of the dynamic states of the induction motor with a solid rotor was carried out
based on the calculated parameters. The simulation was carried out using a program written in
the Matlab environment. The simulations show that the electromagnetic moment during the motor
start-up is about 2 times greater than the initial torque in the steady state. On the other hand, the
maximum value of the stator current during the start-up is about 1.5 times greater than the effective
value of the inrush current in the steady state. A good agreement was obtained between the results
calculated from the distribution of the magnetic field by the finite element method and the results
obtained on the basis of the equivalent circuit and, in the case of the electromagnetic torque, with the
results obtained from the transient state during motor reversal.



B   I   B   L   I   O   G   R   A   F   I   A
1. Boldea, I.
Tutelea, L.N. Electric Machines. Transients, Control Principles, Finite Element, Analysis and Optimal Design with MATLAB

CRC Press: Boca Raton, FL, USA, 2022.
2. Boucherma, M.
Kaikaa, M.Y.
Khezzar, A. Park Model of Squirrel Cage Induction Machine Including Space Harmonics Effects.
J. Electr. Eng. 2006, 57, 193–199.
3. Krause, P.C.
Wasynczuk, O.
Sudhoff, S.D. Analysis of Electrical Machinery and Drives System, 2nd ed.
IEEE Press JohnWilley &
Sons: New York, NY, USA, 2002.
4. Paszek, W. Transient of AC Electrical Machines
WNT: Warszawa, Poland, 1986.
5. Bastos, J.P.A.
Sadowski, N. Electromagnetic Modeling by Finite Element Method
Marcel Dekker: New York, NY, USA, 2003.
6. Salon, S.J. Finite Element Analysis Electrical Machines
Kluwer Academic Publishers: Boston, MA, USA
London, UK
Dordrecht,
The Netherlands, 1995.
7. Demenko, A. Time-stepping FE Analysis of Electric Motor Drives with Semiconductor Converters. IEEE Trans. Magn. 1994, 30,
3264–3267. [CrossRef]
8. Piriou, F.
Razek, A. A model for Coupled Magnetic-Electric Circuits in Electric Machines with Skewed Slots. IEEE Trans. Magn.
1990, 26, 1096–1100. [CrossRef]
9. Preston, T.W.
Reece, A.B.
Sangha, P.S. Induction Motor Analysis by Time-Stepping Techniques. IEEE Trans. Magn. 1988, 24,
471–474. [CrossRef]
10. Vassent, E.
Meunier, G.
Foggia, A. Simulation of Induction Machines using Complex Magnetodynamic Finite Element Method
Coupled with the Circuit Equations. IEEE Trans. Magn. 1991, 27, 4246–4249. [CrossRef]
11. Pyrhonen, J.
Jokinen, T.
Hrabovcova, V.P. Design of Rotating Electrical Machines
John Wiley & Sons: Hoboken, NJ, USA, 2014.
12. Ali,W.H.
Abood, S.J.
Sadiku, M.N.O. Fundamentals of Electric Machines
CRC Press: Boca Raton, FL, USA, 2019.
13. Canay, I. Causes of Discrepancies on Calculation of Rotor Quantities and Exact Equivalent Diagrams of the Synchronous Machines.
IEEE Trans. Power Appar. Syst. 1969, PAS-88, 1114–1645. [CrossRef]
14. Paszek, W.
Staszak, J.
Kapłon, A. The multiloop Equivalent Circuit of the Turbogenerator Derived from the Magnetic Field
Distribution Evaluated by the Finit Element Method. In Proceedings of the International Symposium on Electromagnetic Fields
in Electrical Engineering, Lodz, Poland, 20–22 September 1989
pp. 237–240.
15. Paszek, S. Selected Methods for Assessment and Improvement of Power System Angular Stability
Silesian University of Technology
Publishing House: Gliwice, Poland, 2012.
16. Gałek, M.
Stanisławski, R.
Rydel, M.
Latawiec, K.
Łukaniszyn, M. Fractional-order Difference Basis Functions—A new modeling
concept for dynamical systems. In Proceedings of the 24th International Conference and Methods and Models in Automation and
Robotics, Mi˛edzyzdroje, Poland, 26–29 August 2019.
17. Jalloul, A.
Trigeassou, J.K.
Jelassi, K.
Melchior, P. Fractional Order of Rotor Skin Effect in Induction Machines. Nonlinear Dynamic

Springer: Berlin/Heidelberg, Germany, 2013
pp. 801–813.
18. Racewicz, S.
Kutt, F.
Michna, M.
Sienkiewicz, Ł. Comparative Study of Integer and Non-Integer Order Models of Synchronous
Generator. Energies 2020, 13, 4416. [CrossRef]
19. Xue, D.
Chen, Y.Q.
Atherton, D.P. Linear Feedback Control. Analysis and Design with Matlab
Society for Industrial Applied
Mathematics: Philadelphia, Pennsylvania, 2007.
20. Chen, Y.Q.
Petras, I.
Xue, D. Fractional Order Control—Tutorial. In Proceedings of the 2009 American Control Conference, Hyatt
Regency Riverfront, St. Louis, Mo, USA, 10–12 June 2009
pp. 1397–1411. Available online: http://fractionalcalculus.googlepages.
com (accessed on 4 March 2022).
21. Dzieli ´ nski, A.
Sierociuk, D.
Sarwas, G. Some Applications of Fractional Order Calculus. Bull. Pol. Acad. Sci. Tech. Sci. 2010, 58,
583–592. [CrossRef]
22. Ró˙ zowicz, S.
Zawadzki, A.
Włodarczyk, M.
Wachta, H.
Baran, K. Properties of Fractional-Order Magnetic Coupling. Energies
2020, 13, 1539. [CrossRef]
23. Paszek,W.
Janson, Z.
Rozewicz, Z. Basic Transients State of a Solid Rotor Turbogenerator. Arch. Electr. Eng. 1977, 25, 841–862.
24. Xia, P.
Liang, Z. A Parameter Identification Method for Fractional Order Inductance of Iron Core Reactor. In Proceedings of
the 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering, Yogyakarta,
Indonesia, 23–24 August 2016
pp. 31–36.
25. Jalloul, A.
Trigeassou, J.K.
Jelassi, K.
Melchior, P. Non Integer Identification of Rotor Skin Effect in Induction Machines. Int. J.
Electr. Comput. Eng. 2013, 3, 344–358. [CrossRef]
26. Nadolski, R.
Staszak, J. Simplified method of determination of turbogenerator equivalent circuit parameters. Arch. Electr. Eng.
1995, 44, 95–108.
27. Nadolski, R.
Staszak, J. Analysis of the Field Current after Three-Phase Sudden Short-Circuit of Turbogenerator using Equivalent
Circuit. Electr. Eng. 1995, 78, 399–406. [CrossRef]
28. Babau, R.
Boldea, I.
Miller, T.J.E.
Muntean, N. Complete Parameter Identification of Large Induction Machines from No-Load
Acceleration-Deceleration Test. IEEE Trans. 2007, 54, 1962–1972. [CrossRef]
29. Dandeno, P.
Poray, A.T. Development of Detailed Turbogenerator Equivalent Circuit from Standstill Frequency Response
Measurements. IEEE Trans. Power Appar. Syst. 1981, PAS-100, 1646–1655. [CrossRef]
30. Coultes, M.E.
Watson,W. Synchronous Machine Models by Standstill Frequency Response Tests. IEEE Transation Power Appar.
Syst. 1981, 100, 1480–1489. [CrossRef]
31. Turner, P.J.
Reece, A.B.J. The D.C. Test for Determining Synchronous Machine Parameters: Measurement and Simulation. IEEE
Trans. Energy Convers. 1989, 4, 616–623. [CrossRef]
32. Tumeaganian, A.
Keyhani, A.
Moon, S.I.
Leksan, T.I.
Xu, L. Maximum Likelihood Estimation of Synchronous Machine
Parameters from Flux Decay Data. IEEE Transations Ind. Appl. 1994, 30, 433–439. [CrossRef]
33. Meeker, D. Finite Element Method Magnetics. User Manual, Version 4.2. 2015. Available online: http://www.femm.info/
Archives/doc/manual42.pdf (accessed on 4 March 2022).
34. Optimization Toolbox. User’s Guide Matlab
The MathWorks, Inc.: Natick, MA, USA, 2010.
35. Petráš Ivo: Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab. Edited by Dr. Ali Assi.
October, 2011
pp. 239–264. Available online: www.intechopen.com (accessed on 4 March 2022).