Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[17815] Artykuł:

Solving thermoelasticity problems by means of Trefftz functions

Czasopismo: Computer Assisted Mechanics and Engineering Sciences   Tom: 16, Zeszyt: 3/4, Strony: 193-208
ISSN:  1232-308X
Opublikowano: 2009
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Artur Maciąg orcid logoWZiMKKatedra Matematyki *****1004.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 4


Web of Science LogoYADDA/CEON    
Słowa kluczowe:

termoelastyczność  funkcje trefftz  równania termoelastyczności  ciało skończone 


Keywords:

thermoelasticity  Trefftz functions  thermoelasticity equations  finite body 



Abstract:

The paper presents a new method of approximate solving of the two- and three-dimensional thermoelasticity problems in a finite body. The method presented here can be used for solving direct and inverse problems as well. System of thermoelasticity equations is reduced to the system of wave equations where the temperature occurs as inhomogeneity in one of them. The thermal field is approximated by linear combination of heat polynomials (Trefftz functions for heat conduction equation). The system of wave eąuations is solved by means of wave polynomials (Trefftz functions for wave equation). Convergence of the T-functions method is proved. The procedure of solving direct and inverse thermoelasticity problems by means of Trefftz functions is tested on an example. Sensitiveness of the method according to data disturbance was checked.



B   I   B   L   I   O   G   R   A   F   I   A
[1] M.J. Al-Khatib, K. Grysa, A. Maciąg. The method of solvig polynomials in the beam vibration problems. Journal of Theoretical and Applied Mechanics, 46(2): 347-366, 2008.
[2] M.J. Ciałkowski. Solution of inverse heat conduction problem with use new type of finite element base functions. In: B.T. Maruszewski, W. Muschik, A. Radowicz (eds.), Proceedings of the International Symposium on Trends in Continuum Physics, pp. 64-78. World Scientific Publishing, Singapore, New Jersey, London, Hong Kong, 1999.
[3] M.J. Ciałkowski. Thermal and related functions used in solving certain problems of mechanics. Part I: Solution of certain differential equations by means of inverse operations (in Polish). Studia i materiały LIII. Technika 3, pp. 7-70, Uniwersytet Zielonogórski, 2003.
[4] M.J. Ciałkowski, A. Frąckowiak. Heat Functions and Their Application for Solving Heat Transfer and Mechanical Problems (in Polish). Poznań University of Technology Publishers, 2000.
[5] M.J. Ciałkowski, A. Frąckowiak. Thermal and related functions used in solving certain problems of mechanics. Part II: Effective determination ofiverse operations applied to harmonic functions (in Polish). Studia i materiały LIII. Technika 3, pp. 71-98, Uniwersytet Zielonogórski, 2003.
[6] M.J. Ciałkowski, A. Frąckowiak, K. Grysa. Solution of a stationary inverse heat conduction problems by means of Trefftz non-continuous method. Int. J. of Heat Mass Transfer, 50: 2170-2181, 2007.
[7] M.J. Ciałkowski, S. Futakiewicz, L. Hożejowski. Method of heat polynomials in solving the inyerse heat conduction problems. ZAMM79: 709-711, 1999.
[8] M.J. Ciałkowski, S. Futakiewicz, L. Hożejowski. Heat polynomials applied to direct and inverse heat conduction j problems. In: B.T. Maruszewski, W. Muschik, A. Radowicz (eds.), Proceedings of the International Symposium on Trends in Continuum Physics, pp. 79-88. World Scientific Publishing, Singapore, New Jersey, London, Hong Kong, 1999.
[9] S. Futakiewicz, K. Grysa, L. Hożejowski. On a problem of boundary temperature identification in a cylindrical layer. In: B.T. Maruszewski, W. Muschik, A. Radowicz (eds.), Proceedings of the International Symposium on Trends in Continuum Physics, pp. 119-125. World Scientific Publishing, Singapore, New Jersey, London, Hong Kong, 1999
[10] S. Futakiewicz, L. Hożejowski. Heat polynomials in solving the direct and inverse heat conduction problems in j a cylindrical system of coordinates. In: A.J. Nowak, C. A Brebbia, R. Bialecki, M. Zerroukat (eds.), Advanced Computational Method in Heat Transfer V, pp. 71-80. Computational Mechanics Publications, Southampton, Boston, 1998.
[11] I. Herrera, F. Sabina. Connectivity as an alternative to boundary integral eąuations: Construction of bases. Appl. Math. Phys. Sc., 75(5): 2059-2063, 1978.
[12] J. Jirousek. Basis for development of large finite elements locally satisfying all fields eąuations. Comp. Meth. Appl. Mech. Eng., 14: 65-92, 1978.
[13] J. Jirousek, A.P. Zieliński, H. Rabemantantsoa, A. Yenkatesh. Survey of Trefftz-type element formulations. Computers and Structures, 63(2): 225-242, 1997.
[14] V.D. Kupradze. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland Publ. Cmp, Amsterdam, 1989.
[15] A. Maciąg. Solution of the Three-dimensional Wave Equation by Using Wave Polynomials. PAMM - Proc. Math. Mech., 4: 706-707, 2004.
[16] A. Maciąg. Three-dimensional Wave Polynomials. Mathematical Problems in Engineering, 5: 583-598, 2005.
[17] A. Maciąg. Wave polynomials in elasticity problems. Engineering Transactions, 55(2): 129-153, 2007.
[18] A. Maciąg, J. Wauer. Solution of the two-dimensional wave equation by using wave polynomials. Journal of Engineering Mathematics, 51(4): 339-350, 2005.
[19] A. Maciąg, J. Wauer. Wave Polynomials for Solving Different Types of Two-Dimensional Wave Equations. Computer Assisted Mechanics and Engineering Sciences, 12: 87-102, 2005.
[20] P.C. Rosenbloom, D.V. Widder. Expansion in terms of heat polynomials and associated functions. Trans. Am. Math. Soc., 92: 220-266, 1956.
[21] E. Trefftz. Ein Gegenstiik zum Ritz&apos
schen Yerfahren. Proceedings 2nd International Congres of Applied Mechanics, (Zurich), pp. 131-137, 1926.
[22] H. Yano, S. Fukutani, A. Kieda. A boundary residual method with heat polynomials for solving unsteady heat conduction problems. Franklin Inst, 316: 291-298, 1983.
[23] A.P. Zieliński, O.C. Zienkiewicz. Generalized finite element analysis with T-complete boundary solution functions. Int. J. Numer. Meth. Eng., 21: 509-528, 1985.