Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[25731] Artykuł:

Microvoids Evolution in S235JR Steel Subjected to Multi-Axial Stress State

Czasopismo: Engineering Transactions   Tom: 60, Zeszyt: 4, Strony: 287-314
ISSN:  0867-888X
Opublikowano: 2012
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Paweł Grzegorz Kossakowski orcid logoWBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****805.60  
Wiesław Trąmpczyński orcid logoWBiAKatedra Wytrzymałości Materiałów, Konstrukcji Betonowych i Mostowych *****201.40  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 7


Web of Science LogoYADDA/CEON    
Słowa kluczowe:

Gurson  model Gurson-Tvergaard-Needleman  stan naprężenia  symulacje numeryczne 


Keywords:

Gurson  Gurson-Tvergaard-Needleman GTN material model  multi-axial stress states  microvoids  numerical simulations 



Abstract:

The article presents the results of the experimental and numerical analysis of microvoids evolution in elements made of S235JR steel under multi-axial stress state. The numerical simulations were based on the modified Gurson-Tvergaard-Needleman (GTN) material model, taking into account the impact of microstructural defects on the material strength. Two approaches were used, assuming a global and local damage of the structure of S235JR steel. In both cases, the evolution of microdamage (voids) and their impact on the strength and failure of the material were analysed. The results of numerical simulations were similar to the results obtained during microstructural examinations.



B   I   B   L   I   O   G   R   A   F   I   A
1. Bridgman P.W., Studies in Large Plastic Flow and Fracture, McGraw-Hill, New York, 1952.
2. Teirlinck D., Zok F., Embury J.D., Ashby M.F., Fracture Mechanism Maps in Stress Space, Acta Metallurgica, 36, 5, 1213-1228, 1988.
3. Gurson A.L., Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous Ductile Media, Journal of Engineering Materials and Technology, Transactions of the ASME, 99, 1, 2-15, 1977.
4. Tvergaard V., Influence of Voids on Shear Band Instabilities under Plane Strain Conditions, International Journal of Fracture, 17, 4, 389-407, 1981.
5. Tvergaard V., Needleman A., Analysis of the Cup-Cone Fracture in a Round Tensile Bar, Acta Metallurgica, 32, 1, 157-169, 1984.
6. PN-EN 1993-1-10:2007 Eurocode 3: Design of Steel Structures - Part 1-10: Material Toughness and Through-thickness Properties.
7. Sedlacek G., Feldmann M., Kuhn B., Tschickardt D., Hohler S., Muller C., Hensen W., Stranghoner N., Dahl W., Langenberg P., M ¨ unstermann S., Brozetti J., Raoul J., Pope R., Bijlaard F., Commentary and Worked Examples to EN 1993-1-10 "Material Toughness and Through-Thickness Properties" and Other Toughness Oriented Rules in EN 1993, JRC Scientific and Technical Reports, European Commission Joint Research Centre, Luxembourg 2008.
8. Tvergaard V., Needleman A., Effects of Nonlocal Damage in Porous Plastic Solids, International Journal of Solids and Structures, 32, 8/9, 1063-1077, 1995.
9. Ramaswamy S., Aravas N., Finite Element Implementation of Gradient Plasticity Models. Part II: Gradient-dependent Evolution Equations, Computer Methods in Applied Mechanics and Engineering, 163, 1-4, 33-53, 1998.
10. Borino G., Failla B., Parrinello F., A Symmetric Nonlocal Damage Theory, International Journal of Solids and Structures, 40, 13-14, 3621-3645, 2003.
11. Kossakowski P., The simulation of the plastic range for structural steels under multiaxial state of stress basing on the Gurson-Tvergaard-Needleman model [in Polish: Symulacja plastycznego zakresu pracy stali konstrukcyjnych w złożonym stanie naprężeń w oparciu o model Gursona-Tvergaarda-Needlemana], Przegląd Budowlany, 3, 43-49, 2012.
12. Kossakowski P., An Analysis of the Load-Carrying Capacity of Elements Subjected to Complex Stress States with a Focus on the Microstructural Failure, Archives of Civil and Mechanical Engineering, 10, 2, 15-39, 2010.
13. Kossakowski P.G., Trąmpczyński W., Numerical simulation of S235JR steel failurewith consideration of the influence of microstructural damages [in Polish: Numeryczna symulacja zniszczenia stali S235JR z uwzględnieniem wpływu uszkodzeń mikrostrukturalnych], Przegląd Mechaniczny, 4, 15-22, 2011.
14. Kossakowski P.G., Simulation of Ductile Fracture of S235JR Steel Using Computational Cells with Microstructurally-Based Length Scales, Journal of Theoretical and Applied Mechanics, 50, 2, 589-607, 2012.
15. Faleskog J., Gao X., Shih C.F., Cell Model for Nonlinear Fracture Analysis - I. Micromechanics Calibration, International Journal of Fracture, 89, 4, 355-373, 1998.
16. Gao X., Faleskog J., Shih C.F., Cell Model for Nonlinear Fracture Analysis -II. Fracture-Process Calibration and Verification, International Journal of Fracture, 89, 4, 375-398, 1998.
17. Corigliano A., Mariani S., Orsatti B., Identification of Gurson-Tvergaard Material Model Parameters Via Kalman Filtering Technique. I. Theory, International Journal of Fracture, 104, 4, 349-373, 2000.
18. Tvergaard V., Material Failure by Void Growth to Coalescence, Advances in Applied Mechanics, 27, 83-151, 1989.
19. The determination of the material structure (taken from the construction), comparative analysis with the parameters of the reference steel [in Polish: Określenie struktury materiałów (pobranych z konstrukcji), analiza porównawcza z parametrami stali wzorcowej], Technical report of the Project R04 007 01, Warsaw University of Technology, Warsaw 2008.
20. PN-EN 10002-1:2004 Metallic Materials - Tensile Testing - Part 1: Method of Test at Ambient Temperature.
21. Abaqus 6.10 Analysis User's Manual, Dassault Syst`emes, Providence 2010.
22. Richelsen A.B., Tvergaard V., Dilatant Plasticity or Upper Bound Estimates for Porous Ductile Solids, Acta Metallurgica et Materialia, 42, 8, 2561-2577, 1994.
23. Xia L., Shih C.F., Ductile Crack Growth - I. A Numerical Study Using Computational Cells with Microstructurally-based Length Scales, Journal of the Mechanics and Physics of Solids, 43, 2, 233-259, 1995.
24. Xia L., Shih C.F., Ductile Crack Growth - II. Void Nucleation and Geometry Effects on Macroscopic Fracture Behavior, Journal of the Mechanics and Physics of Solids, 43, 12, 1953-1981, 1995.
25. Hancock J.W., Mackenzie A.C., On the Mechanisms of Ductile Failure in Highstrength Steel Subjected to Multi-axial Stress-states, Journal of Mechanics and Physics of Solids, 24, 2-3, 147-160, 1976.