Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[28492] Artykuł:

Lighting sources with a cold cathode electron tube

Czasopismo: Bulletin of the Polish Academy of Sciences: Technical Sciences   Tom: 56, Zeszyt: 2, Strony: 117-123
ISSN:  0239-7528
Wydawca:  POLISH ACAD SCIENCES DIV IV, PALAC KULTURY I NAUKI, PO BOX 20, PL DEFILAD1, WARSAW, 00-901, POLAND
Opublikowano: Czerwiec 2008
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Elżbieta Czerwosz25.00  
S. Waszuk25.00  
Małgorzata Suchańska orcid logoWEAiIKatedra Telekomunikacji, Fotoniki i Nanomateriałów *****253.00  
Justyna Kęczkowska orcid logoWEAiIKatedra Telekomunikacji, Fotoniki i Nanomateriałów *****253.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 6
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

carbonaceous cold electron cathodes  electron lamp  cold electron emission  lighting elements 



Abstract:

Lighting sources with a cold cathode are widely used in electronics. The lamps with a cold cathode are used primarily as sources of white light in optical scanners, digital indicators, display panels and signaling devices. In the paper the advantages of carbonaceous materials as emitters of cold electrons and the possibilities of using them to create a cathode in an electron lamp are discussed.



B   I   B   L   I   O   G   R   A   F   I   A
[1] W. Schottky, "Cold and hot electron discharges", Z. F. Physik 14, 63-106 (1923).
[2] R.A. Millikan and C.F. Eyring, "Laws governing the pulling of electrons out of metals by intense electrical fields", Phys. Rev. 27, 51-67 (1926).
[3] R.H. Fowler and L. Nordheim, "Electron emission in intense electric fields", Proc. Royal Soc. London 119 (part A), 173 (1928).
[4] R.G. Forbes, "Low-macroscopic-field electron emission from carbon films and other electrically nanostructured heterogeneous materials: hypotheses about emission mechanism", Solid State Electronics 45, 779-808 (2001).
[5] F.J. Himpsel, J.A. Knapp, J.A. Van Vechten, and D.E. Eastman, "Quantum photoyield of diamond (111) - A stable negativeaffinity emitter", Phys. Rev. B20, 624-627 (1979).
[6] W. Geiss, J.C. Twichell, J. Macaulay, and K. Okano, "Lowmacroscopic- field electron emission from carbon films and other electrically nanostructured heterogeneous materials: hypotheses about emission mechanism", Appl. Phys. Lett. 67, 1328-1330 (1995).
[7] M.A. More and D.S. Joag, "Spectral analysis of field emission current fluctuations from a carbon fibre field emitter", J. Phys. D25 (12), 1844-47 (1992).
[8] Y. Sohda, D.M. Tanenbaum, S.W. Turner, and H.G. Craighead, "Fabrication of arrayed glassy carbon field emitters", J. Vac. Sci. Technol. B15, 343-348 (1997).
[9] Y. Saito, K.Hamaguchi, S. Uemura, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasuya, and Y. Nishina, "Field emission from multi-walled carbon nanotubes and its application to electron tubes", Appl. Phys. A, Material Science & Proccesing A67, 95-100 (1998).
[10] Y. Saito and S. Uemura, "Field emission from carbon nanotubes and its application to electron sources", Carbon 38, 169-182 (2000).
[11] V. Davydov, Quantum Mechanics, PWN, Warszawa. 1968.
[12] R.H. Fowler, "The analysis of photoelectric sensitivity curves for clean metals at various temperatures", Phys. Rev. 38, 45-56 (1931).
[13] C.S. Beleznai, D. Vouagner, and J.P. Girardeau-Montaut, "Work function variation during UV laser-induced oxide removal", Appl. Surf. Sc. 139, 6-11 (1999).
[14] Y. Sohda, D.M. Tanenbaum, S.W. Turner, and H.G. Craighead, "Fabrication of arrayed glassy carbon field emitters", J. Vac. Sci. Technol. B 15 (2), (1997).
[15] G.A.J. Amaratunga and S.R.P. Silva, "Nitrogen containing hydrogenated amorphous carbon for thin-film field emission cathodes", Appl. Phys. Lett. 68, 2529-2531 (1996).
[16] W.L. Geiss, J.C. Twichell, J. Macaulay, and K. Okano, "Electron field emission from diamond and other carbon materials after H2, O2, and Cs treatment", Appl. Phys. Lett. 67, 1328-1330 (1995).
[17] L.A. Chernozatonskii, Y.V. Gulayev, Z.J. Kosakovskaja, N.I. Shinitsyn, G.V. Torgashov, Y.F. Zakharchenko, E.A. Fedorov, and V.P. Valchuk, "Electron field emission from nanofilament carbon films", Chem. Phys. Lett. 233 (1), 63-68 (1995).
[18] H.H. Busta and R.W. Pryor, "Electron emission from a laser ablated and laser annealed BN thin film emitter", J. Appl. Phys. 82, 5148-5153 (1997).
[19] E. Kowalska, M. Kozłowski, P. Dłuzewski, J. Radomska, H. Wronka, and E. Czerwosz, "Electron emission from carbon nano-pipes", I State Conf. on Nanotechnology 107, (2007).
[20] C.A. Spindt, I. Brodie, and L. Humprey, "Physical properties of thin-film field emission cathodes with molybdenum cones", J. Appl. Phys. 47, 5248-63 (1976).
[21] C.A. Spindt, C.E. Holland, A. Rosengreen, and I. Brodie, "Field-emitter-array development for high-frequency operation", J. Vac. Sci. Technol. B11 (2), 468-73 (1993).
[22] C.A. Spindt, C.E. Holland, P.R. Schwoebel, and I. Brodie, "Field emitter array development for microwave applications", J. Vac. Sci. Technol. B13 (3), 1986-1989 (1996).
[23] L. Chen and M.M. El-Gomati, "Fabrication of micro-field emitters on ceramic substrates", Microelectronic Engineering 84 (1), 95-100 (2007).
[24] A.Y. Tcherepanov, A.G. Chakhovskoi, and V.B. Sharov, "Flat panel display prototype using low-voltage carbon field emitters", J. Vac. Sci. Technol. B13 (2), 482-486 (1995).
[25] K. Otsuka, H. Ogihara, and S. Takenaka, "Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons", Carbon 41 (2), 223-233 (2003).
[26] Xucum Ma, E. Wang, W. Zhou, D.A. Jefferson, J. Chen, Sh. Deng, and N. Xu, "Polymerized carbon nanobells and their field-emission properties", Appl. Phys. Lett. 75 (20), 3105-3107 (1999).
[27] L. Delzeit, B. Chen, A.M. Cassel, R.M.D. Stevens, C. Nguyen, and M. Meyyappan, "Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth", Chemical Physics Letters 348 (1), 368-374 (2001).
[28] K. Matthews, B.A. Cruden, B. Chen, M. Meyyappan, and L. Delzeit, "Plasma-enhanced chemical vapor deposition of multiwalled carbon nanofibers", J. Nanoscience and Nanotechnology 2 (5), 475-480 (2002).
[29] L. Delzeit, C.V. Nguyen, B. Chen, R. Stevens, A. Cassel, J. Han, and M. Meyyappan, "Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts", J. Physical Chemistry B 106 (22), 5629-5635 (2002).
[30] M. Meyyappan, L. Delzeit, A. Cassel, and D. Hash, "Carbon nanotube growth by PECVD: a review", Plasma Sources Science and Technology 12 (2), 205-216 (2003).
[31] Ch. A. Bower, Sungho Jin, and Wei Zhu, Process for controlled introduction of defects in elongated nanostructures, Zgł. Pat. US 2002/ 0114949 A1, z 22.08.2002.
[32] R.W. Filas, J. Sungho, G.P. Kochanski, and Zhu Wei, Article comprising aligned nanowires and process for fabricating articles, European patent application, EP 1.100.106 A-Z, Zgł. 16.05.2001 Bulletin 2001/20.
[33] Z. Ren, Z. Huang, J.H. Wang, and D. Wang, Free standing and aligned carbon nanotubes and synthesis thereof, World Intellectual Property Organization, Patent Application. WO 99/65821 z 23.12.1999.
[34] C.V. Nguyen, L. Delzeit, K. Matthews, B. Chen and M. Meyyappan, "Purification process for vertically-aligned carbon nanotubes", J. Nanoscience and Nanotechnology 3, 121-125 (2003).
[35] C.E. Dateo, T. Gokcen, and M. Mayyappan, "Modeling of the HiPCo process for carbon nanotube production: I. chemical kinetics", J. Nanoscience and Nanotechnology 2 (5), 523-534 (2002).
[36] T. Gokcen, C.E. Dateo and M. Mayyappan, "Modeling of the HiPCo process for carbon nanotube production: II reactor scale analysis", J. Nanoscience and Nanotechnology 2 (5), 535-544 (2002).
[37] M. Menon and D. Srivastava, "Carbon based molecular electronics devices", J. Material Research 13, 2357-2362 (1998).
[38] E. Czerwosz, "Characteristics of thin films of the system C60/C70+Ni and ways of getting them", Electronics 1, 17-21 (1998), (in Polish).
[39] E. Czerwosz, P. Byszewski, P. Dluzewski, H. Wronka, R. Diduszko, J. Radomska, and M. Kozlowski, "Preparation and characterization of C60 /C70 +Ni polycrystalline thin film grown on different substrates", Fizika A4, 255 (1995), (in Croatian).
[40] E. Czerwosz, P. Byszewski, R. Diduszko, P. Dluzewski, and E. Mizera, "The structural changes of polycrystalline film C60/C70+Ni caused by Ni diffusion", J. Mat. Res. 11 (12), (1996).
[41] E. Czerwosz, P. Dluzewski, R. Nowakowski, and H. Wronka, "Studies of structural changes in C60/C70 +Ni layers annealed under oxidative conditions", Vacuum 48, 357-361 (1997).
[42] E. Czerwosz, P. Dłuzewski, G. Dmowska, R. Nowakowski, E. Starnawska, and H. Wronka, "AFM and TEM investigations of catalytic formed nanotubes in C60/C70+Ni layers", Appl. Surf. Sc. 141, 350-356 (1999).
[43] E. Czerwosz, P. Dłuzewski, and R. Nowakowski, "Topography and structure of C60/C70+Ni film containing carbon nanotubes grown perpendicularly to the substrate", Vacuum 54, 57-62 (1999).
[44] E. Czerwosz, B. Surma, and A. Wnuk, "Photoluminescence and Raman investigations of structural transformation of fullerenes into carbon nanotubes in vacuum annealed C60/C70+Ni films", J. Phys. Chem. Solids 61, 1973-1987 (2000).
[45] E. Czerwosz and P. Dłuzewski, "From fullerenes to carbon nanotubes by Ni catalysis", Diamond and Related Materials 9, 901-905 (2000).
[46] E. Czerwosz, "Field emission from materials of carbon- metal configuration", Elektronics 11, 20-24 (1999), (in Polish).
[47] E. Czerwosz, P. Dłuzewski, W. Gierałtowski, J.W. Sobczak, E. Starnawska, and H. Wronka, "Electron emission from C60/C70+Pd films containing Pd nanocrystals", J. Vac. Sc. & Technol. B18, 1064-1068 (2000).
[48] E. Czerwosz, P. Dłuzewski, J.P. Girardeau-Montaut, D. Vouagner, and K. Zawada, "Work function and electron emission from nanocrystalline Pd film", Vacuum 63, 355-359 (2001).
[49] E. Czerwosz, P. Dłuzewski, J. Keczkowska, M. Kozłowski, J. Rymarczyk, and M. Suchanska, "Preparation and characterization of NiN nanocrystals embedded in carbonaceous matrix", Proc. SPIE 6347, 6347-50 (2006).
[50] E. Czerwosz, P. Dłuzewski, J. Keczkowska, M. Kozłowski, M. Suchanska, and H. Wronka, "Palladium nanocrystals and their properties", I State Conf. on Nanotechnology 188, (2007).
[51] E. Czerwosz, M. Adydan, P. Dłuzewski, W. Gierałtowski, M. Kozłowski, E. Starnawska, and H. Wronka, "Cold electron emission from layers of the C60/C70+Ni system", Electronic Scientific Works: Vacuum Technique and Vacuum Technologies 123, 83 (1999).
[52] E. Czerwosz, P. Dłuzewski, W. Gierałtowski, J. W. Sobczak, E. Starnawska, and H. Wronka, "Electron emission from C60/C70+Pd films containing Pd nanocrystals", J. Vac. Sci. Technol. B18, 1064 (2000).
[53] N.S. Xu and S.E. Huq, "Novel cold cathode materials and applications", Materials Science and Engineering R48, 47-189 (2005).
[54] W. Czarczynski, Vacuum Microelectronics, pp. 108-115, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2000, (in Polish).
[55] A. Rózowicz, Influence of Frequency of Feeding Current of Fluorescence Lamp on their Chosen Characteristics, Wyd. PSk, Kielce, 2004.
[56] Y.A. Grigoriew, A.I. Petrosyan, V.V. Penzyekov, V.G. Pimenov, V.I. Rogovin, V.I. Shestyorkin, V.P. Kudryashov, and V.C. Semyonov, "Experimental study of matrix carbon field-emission cathodes and computer aided design of electron guns for microwave power devices, exploring these cathodes", Proc. IVMC 96, 522-525 (1996).
[57] I. Petrosyan, S.P. Morev, and V. Ragovin, "Experimental study of matrix carbon field-emission cathodes and computer aided design of electron guns for microwave power devices, exploring these cathodes", Proc. IVMC 99, 208-209 (1999).
[58] S. Baturin, I.N. Yeskin, Trufanow, N.N. Chadaev, E.P. Sheshun, and R.G. Tchesov, "Electron gun with field emission cathode of carbon fiber bundle", J. Vac. Sci. Technol. B21 (1), 354-357 (2003).
[59] I. Trufanov, A.S. Baturin, N.N. Chadaev, E.P. Shesin, and I.N. Yeskin
"Miniature X-ray tube with field-emission cathode", Proc. IVMC, 21 (2001).
[60] H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, and F.Okuyama, "Carbon nanotubes as electron source in an x-ray tube", Appl. Phys. Lett. 78 (17), 2578-2580 (2001).
[61] W. Knapp, D. Schleussener, A.S. Baturin, I.N. Yeskin, and E.P. Sheshin, "CRT lighting element with carbon field emitters", Vacuum 69 (1), 339-344 (2003).
[62] E.P. Sheshin, A.S. Baturin, K.N. Nikolskiy, R.G. Tchesov, and V.B. Sharov, "Field emission cathodes based on milled carbon fibers", Applied Surface Science 251, 196-200 (2005).
[63] K.B.K. Teo, E. Minoux, L. Hudanski, F. Peauger, J.P. Schnell, L. Gangloff, P. Legagneux, D. Dieumegard, G.A.J. Amaratunga, and W.I. Milne, "Microwave devices: carbon nanotubes as cold cathodes", Nature 437, 968 (2005).