Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[39920] Artykuł:

Microcavity with DBR mirrors for efficient THz emission from optically pumped GaP layer: Numerical analysis by the method of single expression

Czasopismo: International Conference on Transparent Optical Networks-ICTON   Strony: 1-5
ISSN:  2162-7339
ISBN:  978-1-4673-7880-2
Wydawca:  IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
Opublikowano: Lipiec 2015
Seria wydawnicza:  International Conference on Transparent Optical Networks-ICTON
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Hovik V. Baghdasaryan20.00  
Tamara M. Knyazyan20.00  
Tamara T. Hovhannisyan20.00  
Arsen A. Hakhoumian20.00  
Marian MarciniakWEAiIKatedra Systemów Informatycznych *2015.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

THz emission  optical rectification  one-dimensional microcavity  DBR mirrors  electromagnetic modelling  method of single expression 



Abstract:

Electromagnetic modelling of THz wave emission from GaP layer imbedded in a Fabry-Perot micro-resonator formed by two DBR mirrors is performed. The frequency-domain modelling is carried out by the method of single expression. The modelling permits to reveal favourable DBR-GaP-DBR structure, where layers of DBRs adjacent to the amplifying GaP layer are layers of lower permittivity. Proper choice of DBR mirrors permits to attain an essential enhancement of THz radiation from an optically pumped GaP layer. Resonant emission takes place at frequencies coinciding with resonant transparency of Fabry-Perot microcavity with GaP layer serving as a spacer. Distributions of electric field and Poynting vector within two types of micro-resonators at THz emission wavelength are obtained by using the modelling approach. Simulation results for the field distribution allow explaining the physics of the given emitting structure.