Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[40522] Artykuł:

Distributed Strain Reconstruction Based on a Fiber Bragg Grating Reflection Spectrum

Czasopismo: Metrology and Measurement Systems   Tom: 20, Zeszyt: 1, Strony: 53-64
ISSN:  0860-8229
Wydawca:  POLISH ACAD SCIENCES COMMITTEE METROLOGY & RES EQUIPMENT, UL MIODOWA 10, WARSAW, 00251, POLAND
Opublikowano: Marzec 2013
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Małgorzata Detka orcid logoWEAiIKatedra Informatyki, Elektroniki i Elektrotechniki *5010.00  
Zdzisław KaczmarekWEAiIKatedra Informatyki, Elektroniki i Elektrotechniki *5010.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 20
Klasyfikacja Web of Science: Article


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science     Web of Science LogoYADDA/CEON    
Keywords:

fiber Bragg grating  synthesis  distributed sensing  transfer matrix method  



Abstract:

In this paper, we present a synthesis of the parameters of the fiber Bragg grating (FBG) and the reconstruction of the distributed strain affecting the grating, performed by means of its reflection spectrum. For this purpose, we applied the transition matrix method and the Nelder-Mead nonlinear optimization method. Reconstruction results of the strain profile carried out on the basis of a simulated reflection spectrum as well as measured reflection spectrum of the FBG indicate good agreement with the original strain profile; the profile reconstruction errors are within the single digit percentage range. We can conclude that the Nelder-Mead optimization method combined with the transition matrix method can be used for distributed sensing problems.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Othonos T.A., Kalli, K. (1999). Fiber Bragg Grating: Fundamentals and Applications in Telecommunications and Sensing. Artech House, Boston, London.
[2] Hung , S., Leblanc, M., Ohn, M.M., Measures R. M. (1995). Bragg intragrating structural sensing. Appl Opt., 34(22), 5003-5009.
[3] Hung, S., Ohn, M.M., Measures, R.M. (1996). Phase-based Bragg intragrating distributed strain sensor. Appl. Opt., 35(7), 1135-1142.
[4] Azana, J., Muriel, M.M., Chen, L.R., Smith, P.W. E. (2001). Fiber Bragg grating period reconstruction using time-frequency signal analysis and application to distributed sensing. J. Lightwave Technol., 19(5), 646-654.
[5] Peral, E., Capmany, J., Marti, J. (1996). Iterative solution to the Gel&apos
Fand-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings. IEEE J. Quantum Electron., 32, 2078-2084.
[6] Shi, C., Zeng, N., Zhang, M., Liao, Y., Lai, S. (2003). Adaptive simulated annealing algorithm for the fiber Bragg grating distributed strain sensing. Opt. Commun., 226, 167-173.
[7] Li, M., Zeng, N, Shi, C., Zhang, M,. Liao, Y. (2005). Fiber Bragg grating distributed strain sensing: an adaptive simulated annealing algorithm approach. Optics & Laser Technol., 37, 454-457.
[8] Zou, H., Liang, D., Zeng, J., Feng, L. (2012). Quantum-behaved particle swarm optimization algorithm for the reconstruction of fiber Bragg grating sensor strain profiles. Opt. Commun., 285, 539-545.
[9] Skaar, J., Wang, L., Erdogan, T. (2001). On the synthesis of fiber Bragg gratings by Layer Peeling. IEEE J. Quantum Electron., 37, 165-173.
[10] Casagrande, F., Crespi, P., Grassi, A.M., Lulli, A., Kenny, R.P., Whelan, M.P. (2002). From the Reflected Spectrum to the Properties of a Fiber Bragg Grating: A Genetic Algorithm Approach with Application to Distributed Strain Sensing. Appl Opt., 41(25), 5238-5244.
[11] Cheng, H.Ch., Huang, J.F, Chen, Y.H. (2008). Reconstruction of phase-shifted fiber Bragg grating parameters using genetic algorithm over thermally-modulated reflection intensity spectra. Optical Fiber Technology, 14, 27-35.
[12] Zhang, R., Zheng, S., Xia, Y. (2008). Strain profile reconstruction of fiber Bragg grating with gradient using chaos genetic algorithm and modified transfer matrix formulation. Opt. Commun., 281, 3476-3485.
[13] Gill, A., Peters, K., Studer, M. (2004). Genetic algorithm for the reconstruction of Bragg grating sensor strain profiles. Meas. Sci. Technol., 15, 1877-1884.
[14] LeBlanc, M., Huang, S.Y., Ohn, M.M., Measures, R.M.,A., Guemes, Othonos, A. (1996). Distributed strain measurement based on a fiber Bragg grating and its reflection spectrum analysis. Opt. Lett., 21, 1405-1407.
[15] Hung, S., Ohn, M.M., Leblanc, M., Measures, R.M. (1998). Continuous arbitrary strain profile measurements with fiber Bragg gratings. Smart Materials and Structures, 7, 248-256.
[16] Erdogan, T. (1997). Fiber grating spectra. J. Lightwave Technol., 15(8), 1277-1294.
[17] Lagaris, J.C., Reeds, J.A. Wright, M.H., Wright, P.E. (1998). Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. Siam J. Optimizat., 9(1), 112-147.
[18] Kaczmarek, Z., Detka, M. (2010). Influence of the strain gradient of a uniform fiber grating on its spectral characteristics. Measurement Automation and Monitoring, 12, 1439-1441.
[19] Prabhugoud, M., Peters, K. (2004). Modified transfer matrix formulation for Bragg grating strain sensors. J. Lightwave Technol., 22(10), 2302-2309.
[20] Peters, K., Pattis, P., Botsis, J., Giaccari, P. (2000). Experimental verification of respone of embedded optical fiber Bragg grating sensors in non-homogeneous strain fields. Optics & Lasers Engineering, 33, 107-119.