Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[48964] Artykuł:

Modelowanie i symulacja numeryczna samonaprowadzania pocisku rakietowego na cel naziemny z wykorzystaniem sterowanego giroskopu

(Modelling and Numerical Simulations of a Self-Guided Missile Stabilized by a Gyroscope)
Czasopismo: Problemy Mechatroniki: Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa   Tom: 5, Zeszyt: 3, Strony: 35-50
ISSN:  2081-5891
Opublikowano: 2014
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Procent
udziału
Liczba
punktów
Edyta Ładyżyńska-KozdraśPolitechnika Warszawska50.00  
Zbigniew Koruba orcid logoWMiBMKatedra Technik Komputerowych i Uzbrojenia**506.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 6


Pełny tekstPełny tekst     Web of Science LogoYADDA/CEON    
Słowa kluczowe:

mechanika  równania ruchu  prawa sterowania  samonaprowadzanie  giroskop  pocisk rakietowy 


Keywords:

mechanics  equations of motion  control law  homing  gyroscope  missile 



Streszczenie:

W pracy zaprezentowano modelowanie dynamiki pocisku rakietowego, stabilizowanego przy użyciu giroskopu, samonaprowadzającego się na manewrujący cel naziemny. Model matematyczny opracowany został przy zastosowaniu równań Boltzmanna–Hamela dla układów mechanicznych o więzach nieholonomicznych. Pokazano, jak stosując ogólny model matematyczny sterowanego obiektu latającego, wprowadzając prawa sterowania jako więzy nieholonomiczne oraz stabilizację giroskopową, można sterować automatycznie badanym obiektem. Wprowadzone prawa sterowania stanowią związki kinematyczne uchybów, to znaczy różnic między parametrami zadanymi i realizowanymi lotu pocisku rakietowego. Otrzymane prawa sterowania potraktowano jako więzy nieholonomiczne ograniczające ruch pocisku tak, aby spełniał on żądany manewr sterowany. Związki kinematyczne i kryteria naprowadzania stanowią koordynację lotu sterowanej automatycznie rakiety, której ruch został powiązany z linią obserwacji manewrującego przestrzennie celu, wyznaczoną przez oś sterowanego giroskopu. Poprawność opracowanego modelu matematycznego potwierdziła symulacja numeryczna przeprowadzona dla pocisku klasy „Maverick” wyposażonego w giroskop będący elementem wykonawczym skanowania powierzchni ziemi i śledzenia wykrytego na niej celu. Analizie poddana została zarówno dynamika giroskopu, jak i pocisku podczas procesu śledzenia wykrytego celu. Wyniki przedstawione zostały w postaci graficznej.




Abstract:

The paper presents the modelling of the dynamics of a self-guided missile steered using a gyroscope. In such kinds of missiles, attacking the targets detected by them, the main element is a self-guiding head, which is operated by a steered gyroscope. A mathematical model was precluded using the Boltzmann–Hamel equations for mechanical systems with non-holonomic constraints. A relatively simple method for automatic control has been presented based on introducing the control laws and gyroscope into a general model of a flying object. These control laws have the form of kinematics relations between the real and preset flight parameters, respectively. The resulting control laws are considered as non-holonomic constraints of the missile motion ensuring that it executes the specified controlled manoeuvre. Kinematical relations combined with homing criteria represent the coupling between the missile flight and 3D motion of a manoeuvring target. Correctness of the developed mathematical model was confirmed by digital simulation conducted for a Maverick missile equipped with a gyroscope being an executive element of the system scanning the earth’s surface and following the detected target. Both the dynamics of the gyroscope and the missile during the process of scanning and following the detected target were the subject to digital analysis. The results were presented in graphic form.