Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[58440] Artykuł:

Comparison of higher harmonic contents in salient pole synchronous generator with different rotor construction

Czasopismo: Archives of Electrical Engineering   Tom: 66, Zeszyt: 1, Strony: 121-139
ISSN:  1427-4221
Opublikowano: Marzec 2017
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Krzysztof Ludwinek orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne335.005.00  
Roman Nadolski WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Niespoza "N" jednostkiAutomatyka, elektronika, elektrotechnika i technologie kosmiczne335.00.00  
Jan Staszak orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne335.005.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 15


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science LogoYADDA/CEON    
Keywords:

salient pole synchronous generator  higher harmonics  solid rotor  rotor with radial incisions  laminated rotor 



Abstract:

The paper presents a comparison of higher harmonics in induced phase voltages of a stator winding in the no-load state of a three-phase 5.5 kVA salient pole synchronous generator. The comparison is carried out for the synchronous generator with different salient pole rotor constructions: a non-skewed solid rotor, a non-skewed solid rotor with radial incisions, a nd a laminated electrotechnical steel rotor with skewed slots and damping bars. The calculations of higher harmonics are based on the magnetic field distributions in the air gap, which are carried out in a 2D model in a FEMM program and on the induced voltage waveforms in the stator windings registered during experimental investigations of the 5.5 kVA salient pole synchronous generator in the no-load state.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Dajaku G., Gerling D., Stator slotting effect on the magnetic field distribution of salient pole synchronous permanent-magnet machines, IEEE Transactions on Magnetics, vol. 46, no. 9, pp. 3676-3683 (2010).
[2] Dajaku G., Gerling D., Air-gap flux density characteristics of salient pole synchronous permanentmagnet machines, IEEE Transactions on Magnetics, vol. 48, no. 7, pp. 2196-2204 (2012).
[3] Gaussens B., Saint-Michel J., Lécrivain M., Gabsi M., Analytical approach for air-gap modeling of field-excited flux-switching machine: No-load operation, IEEE Transactions on Magnetics, vol. 10, no. 10, pp. 1-13 (2012).
[4] Xiaohua B., Na L., Yong F., Fuying L., Novel method of evaluation of Carter factor for closed slot submersible motor including fringing effect and magnetic saturation, Transactions of China Electrotechnical Society, vol. 30, no. 12, pp. 220-227 (2015).
[5] Sobczyk T.J., Mathematical model of synchronous generators accounting for saturation due to the first and the third MMF harmonic, 35th International Symposium on Electrical Machines SME’99, 14-16 June, Kazimierz Dolny, Poland, OWPW, Elektryka, no. 111, pp. 43-51 (1999).
[6] Kutt F., Michna M., Ronkowski M., Chrzan P.J., Non-uniform saturation modelling of synchronous generator pole shoes, Zeszyty Problemowe Maszyny Elektryczne, no. 103, pp. 121-126 (2014).
[7] Skwarczyński J., Weinreb K., Method of analysis of slot harmonics in the salient-pole synchronous generators, International Conference on Electrical Machines (ICEM’1990), Aug. 13-15, Boston MA, USA, pp. 1165-1170 (1990).
[8] Moreira J., Lipo T.A., Modeling of saturated AC machines including air gap flux harmonic components, IEEE-IAS Conference Record, 7-12 October, Seattle, Washington, USA, Part 1, pp. 37-44 (1990).
[9] Ludwinek K., An overview of the most important methods of reducing the harmonic content introduced by discretely distributed armature winding, Elektro. Info. (in Polish), no. 7-8, pp. 53-57 (2014).
[10] Kutt F., Michna M., Ronkowski M., Chrzan P.J., Polyharmonic model of synchronous generator for analysis of autonomous power generation systems, Zeszyty Problemowe Maszyny Elektryczne, no. 92, pp. 109-114 (2011).
[11] Ludwinek K., Influence of DC voltage and current of field winding on induced stator voltages of a salient pole synchronous generator, International Review of Electrical Engineering, vol. 9, no. 1, pp. 62-72 (2014).
[12] Ludwinek K., FEMM utilisation in representation of inductance distributions in a salient pole synchronous generator circuital model in no-load state, Technical Transactions – Electrical Engineering, vol. 1-E/2015, pp. 325-341 (2015).
[13] Ludwinek K., Some aspects of inductance distributions modeling in dq0-axes and damping circuits on the rotor of a salient pole synchronous generator, Technical Transactions – Electrical Engineering, vol. 2-E/2015, pp. 37-52 (2015).
[14] Dąbrowski M., Design of Alternating Current Electrical Machines, WNT (in Polish), Warszawa (1994).
[15] Pyrhönen J., Jokinen T., Hrabcová V.P., Design of Rotating Electrical Machines, John Wiley & Sons (2014).
[16] Carter F.W., Note on air gap and interpolar induction, Journal of Institution of Electrical Engineering, vol. 29, no. 146, pp. 923-933 (1926).
[17] Ludwinek K., Influence of representation of the stator to rotor mutual inductances on the induced phase voltage waveforms in a salient pole synchronous generator, Zeszyty Problemowe Maszyny Elektryczne, no. 104, pp. 147-154 (2014).
[18] Ludwinek K., Nadolski R., Staszak J., Comparison of higher harmonic contents in salient pole synchronous generator with radial incisions on the solid pole surface, Maszyny Elektryczne – Zeszyty Problemowe, no. 108, pp. 113-119 (2015).
[19] Vicol L., Banyai A., Viorel I.A., Simond J.J., On the damper cage bars’ currents calculation for salient pole large synchronous machines, 11th International Conference on Optimization of Electrical and Electronic Equipment, May 22-24, Brasov, Romania, pp. 9-14 (2008).
[20] Nadolski R., Staszak J., Natural hunting pulsations of large power turbogenerators, Archives of Electrical Engineering, vol. XLV, no. 4, pp. 405-459 (1996).
[21] Bacher J., Maier G., The shielding effect of the built-in damper cage in a synchronous machine, International Conference on Renewable Energy and Power Quality (ICREPQ&apos
04), 31 March-02 April, Barcelona, Spain, pp. 250-259 (2004).
[22] Sahoo S.K., Rodriguez P., Sulowicz, M., Comparative investigation of fault indicators for synchronous machine failures, International Conference on Electrical Machines (ICEM’2014), September 2-5, Berlin, Germany, pp. 1503-1509 (2014).
[23] Rodriguez P., Sahoo S., Pinto C.T., Sulowicz M., Field current signature analysis for fault detection in synchronous motors, in diagnostics for electrical machines, IEEE 10th International Symposium on Electric machines, Power Electronics and Drives (SDEMPED), 1-4 September, Guarda, Portugal, pp. 246-252 (2015).
[24] Raziee S.M., Kelk H.M., Alikhani H.R.R., Omati A., Air-gap eccentricity effects on harmonic contents of field current in synchronous generators, International Review of Electrical Engineering, vol. 5, no. 1, pp. 83-89 (2010).
[25] Akbari H., An improved analytical model for salient pole synchronous machines under general eccentricity fault, Progress in Electromagnetic Research, no. 49, pp. 389-409 (2013).
[26] http://www.femm.info/wiki/HomePage, accessed November 2015.
[27] Jedryczka C., Szelag W., Demenko A., Wojciechowski R. M., Description of multiply connected regions with induced currents using T-T method, Progress in Electromagnetic Research B, no. 43, pp. 279-294 (2012).
[28] Bastos J.P.A., Sadowski N., Electromagnetic Modeling by Finite Element Methods, Marcel Dekker, New York (2003).
[29] Gomez E., Roger-Folch J., Gabaldon A., Molina A., Coupling 2D finite element models and circuit equations using a bottom-up methodology, ACES Journal, vol. 17, no. 3, pp. 225-231 (2002).
[30] Chung Y., Galyda J., Effect of Eddy Current in the Laminations on the Magnet Field, LS Note No. 200, April (1992).