Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[58970] Artykuł:

Application of Ellipse Fitting Algorithm in Incoherent Sampling Measurements of Complex Ratio of AC Voltages

(Zastosowanie algorytmu dopasowania do elipsy w pomiarach zespolonego stosunku napięć zmiennych w warunkach niekoherentnego próbkowania)
Czasopismo: IEEE Transactions on Instrumentation and Measurement   Tom: 66, Zeszyt: 6, Strony: 1117-1123
ISSN:  0018-9456
Opublikowano: Marzec 2017
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jerzy Augustyn orcid logo WEAiIKatedra Informatyki, Elektroniki i Elektrotechniki *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne5030.00.00  
Marian Kampik Niespoza "N" jednostki50.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 30


DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

sampling measurements  complex voltage ratio  discrete Fourier transform DFT  ellipse fitting algorithm EFA  incoherent sampling  numerical algorithms  precise measurements 



Abstract:

This paper presents a comparison of results of coherent and incoherent sampling measurements of complex ratios of sinusoidal voltages, obtained with the use of an ellipse-fitting algorithm (EFA) and with the use of discrete Fourier transform (DFT). The EFA algorithm has not been yet used in the measurements of the complex voltage ratio. Known applications of EFA in impedance measurements were based on simultaneous sampling of two voltages by a two-channel aquisition card. Measurements presented in this paper were made with an automated measurement system consisting of Keysight 3458A multimeter operating in the DC voltage sampling mode. The internal 20-MHz clock generator of this multimeter was replaced with a custom-made clock module dividing the clock frequency by 2 and providing fiber optic 10-MHz synchronization signal. This signal was used as the reference frequency of the Keysight 33250A generator which served as a reference frequency clock for the dual-channel source of digitally synthesized sinusoidal voltage. Because the output frequency of the Keysight 33250A generator can be adjusted with very high resolution and accuracy, it was possible to perform coherent and incoherent sampling measurements with controlled frequency deviation.



B   I   B   L   I   O   G   R   A   F   I   A
[1] F. Overney and B. Jeanneret, “RLC bridge based on an automated synchronous sampling system,” IEEE Trans. Instrum. Meas., vol. 60, no. 7, pp. 2393–2398, Jul. 2011.
[2] F. Overney, B. Jeanneret, and A. Mortara, “A synchronous sampling system for high precision AC measurements,” in Proc. CPEM, Broomfield, CO, USA, Jun. 2008, pp. 596–597.
[3] G. Ramm and H. Moser, “From the calculable AC resistor to capacitor dissipation factor determination on the basis of time constants,” IEEE Trans. Instrum. Meas., vol. 50, no. 2, pp. 286–289, Apr. 2001.
[4] A. Met, K. Musiol, and T. Skubis, “Vector voltmeter for high-precision unbalanced comparator bridge,”
IEEE Trans. Instrum. Meas., vol. 60, no. 2, pp. 577–583, Feb. 2011.
[5] F. Overney and A. Mortara, “Synchronization of sampling-based measuring system,” IEEE Trans. Instrum. Meas., vol. 63, no. 1, pp. 89–95, Jan. 2014.
[6] G. Ramm, H. Moser, and A. Braun, “A new scheme for generating and measuring active, reactive, and apparent power at power frequencies with uncertainties of 2.5×10−6,” IEEE Trans. Instrum. Meas., vol. 48, no. 2, pp. 422–426, Apr. 1999.
[7] E. Houtzager, G. Rietveld, and H. E. van den Brom, “Switching sampling power meter for frequencies up to 1 MHz,” IEEE Trans. Instrum. Meas., vol. 62, no. 6, pp. 1423–1427, Jun. 2013.
[8] G. B. Gubler and E. Z. Shapiro, “Implementation of sampling measurement system for new VNIIM power standard,” in Proc. CPEM, Washington, DC, USA, Jul. 2012, pp. 294–295.
[9] D. Ilic and J. Butorac, “Use of precise digital voltmeters for phase measurements,” IEEE Trans. Instrum. Meas., vol. 50, no. 2, pp. 449–452, Apr. 2001.
[10] E. Toth, A. M. R. Franco, and R. M. Debatin, “Power and energy reference system, applying dual-channel sampling,” IEEE Trans. Instrum. Meas., vol. 54, no. 1, pp. 404–408, Feb. 2005.
[11] G. A. Kyriazis and M. L. R. D. Campos, “An algorithm for accurately estimating the harmonic magnitudes and phase shifts of periodic signals with asynchronous sampling,” IEEE Trans. Instrum. Meas., vol. 54, no. 2, pp. 496–499, Apr. 2005.
[12] P. M. Ramos, F. M. Janeiro, and T. Radil, “Comparison of impedance measurements in a DSP using ellipse-fit and seven-parameter sine-fit algorithms,” Measurement, vol. 42, no. 9, pp. 1370–1379, Nov. 2009.
[13] R. Lapuh, “Measurement of asynchronously sampled harmonically distorted waveforms,” in Proc. CPEM, Rio de Janeiro, Brazil, Aug. 2014, pp. 500–501.
[14] W. G. K. Ihlenfeld and M. Seckelmann, “Simple algorithm for sampling synchronization of ADCs,” IEEE Trans. Instrum. Meas., vol. 58, no. 4, pp. 781–785, Apr. 2009.
[15] IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters, IEEE Standard 1241-2010, 2011.
[16] T. Xia and Y. Liu, “Single-phase phase angle measurements in electric power systems,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 844–852, May 2010.
[17] M. Wu, D. Chen, and G. Chen, “New spectral leakage-removing method for spectral testing of approximate sinusoidal signals,” IEEE Trans. Instrum. Meas., vol. 61, no. 5, pp. 1296–1306, May 2012.
[18] M. Kampik, “Comparison of nonquantum methods for calibration of the digital source of very-low-frequency AC voltage,” IEEE Trans. Instrum. Meas., vol. 62, no. 6, pp. 1615–1620, Jun. 2013.
[19] J. Augustyn, “Some LMS-based algorithms for impedance measurements,” Measurement, vol. 41, no.2, pp. 178–185, Feb. 2008.
[20] P. M. Ramos, F. M. Janeiro, M. Tlemçani, and A. C. Serra, “Recent developments on impedance measurements with DSP-based ellipse-fitting algorithms,” IEEE Trans. Instrum. Meas., vol. 58, no. 5, pp. 1680–1689, May 2009.
[21] W. Gander, G. H. Golub, and R. Strebel, “Least-squares fitting of circles and ellipses,” BIT Numer. Math., vol. 34, no. 4, pp. 558–578, 1994.
[22] B. Sarankumar and L. T. Ong, “Phase offset estimation using least squares ellipse fitting technique,” in Proc. ICSPCS, 2013, pp. 1–4.
[23] K. Kanatani and P. Rangarajan, “Hyperaccurate ellipse fitting without iterations,” in Proc. VISAPP, vol. 2. Jan. 2010, pp. 5–12.
[24] R. Halíˇr and J. Flusser, “Numerically stable direct least squares fitting of ellipses,” in Proc. WSCG, Bory, Czech Republic, Feb. 1998, pp. 125–132.
[25] J. Augustyn and M. Kampik, “About the use of an ellipse fitting algorithm in sampling measurements of complex ratio of AC voltages,” in Proc. CPEM, Ottawa, ON, Canada, Jul. 2016, pp. 1–2.
[26] Z. A. Awan and P. M. Ramos, “Improvement of phase difference estimation using modified ellipse fit method,” in Proc. I2MTC, May 2010, pp. 78–81