Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[70230] Artykuł:

Efficiency Investigation of BoF, SVT and Pyramid Match Algorithms in Practical Recognition Applications

Czasopismo: Proceedings of the 4th International Conference on Mathematics and Computers in Sciences and in Industry (MCSI 2017)   Tom: 4, Strony: 171-178
ISBN:  978-1-5386-2820-1
Wydawca:  IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA
Opublikowano: Sierpień 2017
Liczba arkuszy wydawniczych:  2.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Remigiusz Baran orcid logo WEAiIKatedra Informatyki, Elektroniki i Elektrotechniki *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne10015.0015.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 15
Klasyfikacja Web of Science: Proceedings Paper


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Keywords:

Image Recognition  SURF  Make and Model Recognition of Cars  Landmark Detection  Bag of Features  Scalable Vocabulary Tree  Pyramid Match 



Abstract:

The choice of local image features is crucial for many computer vision applications. Scale Invariant Feature Transform (SIFT) features [1] and their upgraded version – Speeded-Up Robust Features (SURF) [2], are the most successful and popular ones for different object and scene recognition tasks, in terms of non-real and real time requirements, respectively. However, local features are not the only means building up the potential for fast and user-friendly solutions. Methods applied to process extracted features and their descriptors at the next steps are also critical. Three selected approaches of these type, based on to Bag of Features [3], Scalable Vocabulary Tree [4] and Pyramid Match [5] methods, respectively, are examined in the paper. Their effectiveness with regard to real-time make and model recognition of cars as well as visual building and places identification is reported and discussed as a final result of performed examination.



B   I   B   L   I   O   G   R   A   F   I   A
1. D.G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints. Journal of International Journal of Computer Vision, 60(2):91–110, 2004.
2. H. Bay, A. Ess, T. Tuytelaars et al., Speeded-Up Robust Features (SURF). Journal of Computer Vision and Image Understanding, 110(3):346–359, 2008.
3. G. Csurka, C. Dance, L. Fan et al., Visaul Categorization with Bags of Keypoints, Workshop on Statistical Learning in Computer Vision, ECCV (2004), 1:1-22, 2004.
4. D. Nister and H. Stewenius, Scalable Recognition with a Vocabulary Tree. Int. Conf. on Computer Vision and Pattern Recognition, 2:2161-2168, 2006.
5. K. Grauman and T. Darrell, The Pyramid Match Kernel: Efficient Learning with Sets of Features. Journal of Machine Learning Research, 8:725-760, 2007.
6. A.J. Siddiqui, A. Mammeri, and A. Boukerche. Real-Time Vehicle Make and Model Recognition Based on a Bag of SURF Features. Journal of IEEE Transactions on Intelligent Transportation Systems. 17(11):3205-3219, 2016.
7. K. Lee, S. Lee, W.J. Jung et al., Fast and Accurate Visual Place Recognition Using Street-View Images, Journal of Electronics Telecommunications Research Inst. 39(2):97-107, 2017.
8 http://en.neurosoft.pl/products/neurocar/neurocar-accesscontrol/. Viewed 21 June 2017
9. https://www.youtube.com/watch?v=OogVCk0kp_k. Viewed 21 June 2017.
10. https://www.facebook.com/search/top/?q=google%20lens. Viewed 21 June 2017.
11. https://cloud.google.com/vision/docs/detecting-landmarks. Viewed 21 June 2017.
12. M. Grega and S. Łach, Urban Photograph Localization Using The INSTREET Application--Accuracy and Performance Analysis. Journal of Multimedia Tools and Applications. 74(12) 4369-4380, 2015.
13. R. Baran, T. Ruść, and M. Rychlik, A Smart Camera for Traffic Surveillance. In: Dziech A., Czyżewski A. (eds) Multimedia Communications, Services and Security. MCSS 2014. Communications in Computer and Information Science, 429:1-15, 2014.
14. R. Baran, A. Zeja and P. Slusarczyk, An Overview of the IMCOP System Architecture with Selected Intelligent Utilities Emphasized, In: Dziech A., Leszczuk M., Baran R. (eds) Multimedia Communications, Services and Security. MCSS 2015. Communications in Computer and Information Science, 566:3-17, 2015.
15. R. Baran, A. Glowacz, and A. Matiolanski. The Efficient Real- and Non- Real-Time Make and Model Recognition of Cars. Journal of Multimedia Tools and Applications, 74(12): 4269-4288, 2015.
16. R. Baran, T. Rusc, and P. Fornalski, A Smart Camera for The Surveillance of Vehicles in Intelligent Transportation Systems. Journal of Multimedia Tools and Applications. 75(17):10471-10493, 2016.
17. S. Lloyd, Least Squares Quantization in PCM, Journal of IEEE Transactions on Information Theory 28(2):129–137, 1982.
18. C. Cortes and V. Vapnik, Support-Vector Networks. Journal of Machine Learning. 20(3):273-297, 1995.
19. S. Knerr, L. Personnaz and G. Dreyfus, Single-Layer Learning Revisited: A Stepwise Procedure for Building and Training a Neural Network. In: Soulié F.F., Hérault J. (eds) Neurocomputing. NATO ASI Series (Series F: Computer and Systems Sciences), 68: 41-50, 1990.
20. VocabTree2. https://github.com/snavely/VocabTree2. Viewed 21 June 2017.
21. K. Grauman, Matching Sets of Features for Efficient Retrieval and Recognition, Ph.D. Thesis, MIT, 2006.
22. libpmk. http://people.csail.mit.edu/jjl/libpmk/. Viewed 21 June 2017.
23. R. Baran and A. Zeja, The IMCOP System for Data Enrichment and Content Discovery and Delivery, Int. Conf. on Computational Science and Computational Intelligence (CSCI), USA, 1:143-146, 2015.