Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[72980] Artykuł:

An identification procedure of electromagnetic parameters for an induction motor equivalent circuit including rotor deep bar effect

Czasopismo: ARCHIVES OF ELECTRICAL ENGINEERING   Tom: 67, Zeszyt: 2, Strony: 279-291
ISSN:  1427-4221
Opublikowano: Czerwiec 2018
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Jarosław Rolek orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne5015.007.50  
Grzegorz Utrata Niespoza "N" jednostki50.00.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 15


DOI LogoDOI     Web of Science LogoYADDA/CEON    
Keywords:

induction motors  equivalent circuits  parameter identication  frequency-domain analysis  genetic algorithms 



Abstract:

The paper presents an identification procedure of electromagnetic parameters for an induction motor equivalent circuit including rotor deep bar effect. The presented procedure employs information obtained from measurement realised under the load curve test, described in the standard PN-EN 60034-28: 2013. In the article, the selected impedance frequency characteristics of the tested induction machines derived from measurement have been compared with the corresponding characteristics calculated with the use of the adopted equivalent circuit with electromagnetic parameters determined according to the presented procedure. Furthermore, the characteristics computed on the basis of the classical machine T-type equivalent circuit, whose electromagnetic parameters had been identified in line with the chosen methodologies reported in the standards PN-EN 60034-28: 2013 and IEEE
Std 112TM-2004, have been included in the comparative analysis as well. Additional verification of correctness of identified electromagnetic parameters has been realised through comparison of the steady-state power factor-slip and torque-slip characteristics determined experimentally and through the machine operation simulations carried out with the use of the considered equivalent circuits. The studies concerning induction motors with two types
of rotor construction – a conventional single cage rotor and a solid rotor manufactured from magnetic material – have been presented in the paper.



B   I   B   L   I   O   G   R   A   F   I   A
[1] McKinnon D.J., Seyoum D., Grantham C., Investigation of parameter characteristics for induction machine analysis and control, Second International Conference on Power Electronics, Machines and Drives (PEMD 2004), Edinburgh, UK, pp. 320–325 (2004).
[2] Raina M., Toliyat H.A., Parameter estimation of induction motors-a review and status report, The 27th Annual Conference of the IEEE Industrial Electronics Society, IECON ’01, Denver, USA, pp. 1327–1332 (2001).
[3] Nordin K.B., Novotny D.W., Zinger D.S., The Influence of Motor Parameter Deviations in Feedforward Field Orientation Drive Systems, IEEE Transactions on Industry Applications, vol. IA-21, iss. 4, pp. 1009–1015 (1985).
[4] Krishnan R., Doran F.C., Study of Parameter Sensitivity in High Performance Inverter Fed Induction Motor Drive Systems, IEEE Transactions on Industry Applications, vol. IA-23, iss. 4, pp. 623–635 (1987).
[5] Garces L.J., Parameter Adaption for the Speed-Controlled Static AC Drive with a Squirrel-Cage Induction Motor, IEEE Transactions on Industry Applications, vol. IA-16, iss. 2, pp. 173–178 (1980).
[6] Matsuo T., Lipo T.A., A Rotor Parameter Identification Scheme for Vector-Controlled Induction Motor Drives, IEEE Transactions on Industry Applications, vol. IA-21, iss. 3, pp. 624–632 (1985).
[7] De Doncker R.W.A.A., Field-oriented controllers with rotor deep bar compensation circuits (induction machines), IEEE Transactions on Industry Applications, vol. 28, iss. 5, pp. 1062–1071 (1992).
[8] Healey R.C., Williamson S., Smith A.C., Improved cage rotor models for vector controlled induction motors, IEEE Transactions on Industry Applications, vol. 31, iss. 4, pp. 812–822 (1995).
[9] Smith A.C., Healey R.C., Williamson S., A transient induction motor model including saturation and deep bar effect, IEEE Transactions on Energy Conversion, vol. 11, iss. 1, pp. 8–15 (1996).
[10] Grantham C., McKinnon D.J., Rapid parameter determination for induction motor analysis and control, IEEE Transactions on Industry Applications, vol. 39, iss. 4, pp. 1014-1020 (2003).
[11] Moon S.I., Keyhani A., Estimation of induction machine parameters from standstill time domain data, IEEE Transactions on Industry Applications, vol. 30, iss. 6, pp. 1609-1615 (1994).
[12] Benzaquen J., Rengifo J., Albánez E., Aller J.M., Parameter estimation for deep-bar induction machines using instantaneous stator measurements from a direct startup, IEEE Transactions on Energy Conversion, vol. 32, iss. 2, pp. 516-524, (2017).
[13] Willis J.R., Brock G.J., Edmonds J.S., Derivation of induced motor models from standstill frequency response tests, IEEE Transactions on Energy Conversion, vol. 4, no. 4, pp. 608–615 (1989).
[14] Utrata G., Rolek J., Kaplon A., The genetic algorithm for an electromagnetic parameters estimation of an induction motor secondary multi-loop equivalent circuit, International Review of Electrical Engineering (IREE), vol. 9, no. 6, pp. 1111–1118 (2014).
[15] Rolek J., Utrata G., Kaplon A., Estimation of electromagnetic parameters of an induction motor multi-loop equivalent circuit based on the machine inductance frequency characteristic, Selected Problems of Electrical Engineering and Electronics (WZEE), Kielce, Poland, pp. 1–6 (2015).
[16] Rolek J., Utrata G., A methodology for electromagnetic parameter estimation of an induction motor equivalent circuit based on the load curve test, 2017 International Symposium on Electrical Machines (SME), Naleczow, Poland, 18-21, pp. 1–6 (2017).
[17] Lehtla T., Joller J., Lehtla M., Laugis J., Parameter identification and comparison of an induction motor models, Eighth International Conference on Power Electronics and Variable Speed Drives, London, UK, pp. 201–205 (2000).
[18] Standard PN-EN60034-28: 2013, Rotating Electrical Machines – Part 28: Test methods for determining quantities of equivalent circuit diagrams for three-phase low-voltage cage induction motors.
[19] IEEE Standard 112TM-2004, IEEE Standard TesProcedure for Polyphase Induction Motors and Generators.
[20] Alonge F., D’Ippolito F., Ferrante G., Raimondi F.M., Parameter Identification of Induction Motor Model Using Genetic Algorithms, IEE Proceedings – Control Theory and Applications, vol. 145, iss. 6, pp. 587–593 (1998).
[21] Rahimpour E., Rashtchi V., Pesaran M., Parameter Identification of Deep-Bar Induction Motors Using Genetic Algorithm, Electrical Engineering, vol. 89, iss. 7, pp. 547–552 (2007).
[22] Kampisios K., Zanchetta P., GeradCh., Trentin A., Identification of Induction Machine Electrical Parameters Using Genetic Algorithms Optimization, IEEE Industry Applications Society Annual Meeting, Edmonton, Canada, pp. 1–7 (2008).
[23] Kumar P.,Dalal A., Kumar Singh A., Identification of three phase induction machines equivalent circuits parameters using multi-objective genetic algorithms, International Conference on Electrical Machines (ICEM), Berlin, Germany, pp. 1211–1217 (2014).
[24] Maitre J., BouchardB., Bouzouane A., Gaboury S., 9 Parameters estimation of an extended induction machine model using genetic algorithms, 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, pp. 608–612 (2015).
[25] Houck C.R., Joines J.A., Kay M.G., A Genetic Algorithm for Function Optimization: A Matlab Implementation, Technical Report NCSU-IE-TR-95–09, North Carolina State University, Raleigh, NC, USA (1995).