Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[75870] Artykuł:

Identification of the heat transfer coefficient during cooling process by means of Trefftz method

(Identyfikacja współczynnika przenikania ciepła metodą Trefftza podczas procesu chłodzenia)
Czasopismo: ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS   Tom: 95, Zeszyt: 10, Strony: 33-39
ISSN:  0955-7997
Opublikowano: Pażdziernik 2018
Liczba arkuszy wydawniczych:  1.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Krzysztof Grysa orcid logo WZiMKKatedra Informatyki i Matematyki Stosowanej**Niespoza "N" jednostki4517.50.00  
Artur Maciąg orcid logo WZiMKKatedra Informatyki i Matematyki Stosowanej**Takzaliczony do "N"Inżynieria mechaniczna4535.00.00  
Magdalena Walaszczyk Niespoza "N" jednostki5.00.00  
Agnieszka Cebo-Rudnicka Niespoza "N" jednostki5.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 35


Pełny tekstPełny tekst     DOI LogoDOI    
Słowa kluczowe:

Współczynnik przenikania ciepła  Funkcja Trefftza  Zagadnienie odwrotney 


Keywords:

Heat transfer coefficient  Trefftz function  Inverse problem 



Streszczenie:

W artykule zastosowano metodę Trefftza, należącą do metod analityczno-numerycznych, w celu określenia współczynnika przenikania ciepła dla Inconelu podczas chłodzenia natryskowego w części granicy. Matematyczny model procesu został sformułowany przy użyciu współrzędnych cylindrycznych. Współczynnik przenikania ciepła jest identyfikowany na podstawie stanu Robina na ochłodzonej granicy. Funkcje treffca dla równania przewodnictwa cieplnego w cylindrycznych bezwymiarowych współrzędnych zostały wykorzystane do znalezienia przybliżonego rozwiązania problemu. Jako reakcje temperatury wewnętrznej wykorzystano rzeczywiste dane z pomiarów. Wynik obliczeń jest podobny do uzyskanego w innej metodzie.




Abstract:

In the article, the Trefftz method, belonging to the analytical-numerical methods, was used to identify the heat transfer coefficient for Inconel during spray cooling at the part of boundary. A mathematical model of the process has been formulated using cylindrical coordinate. The heat transfer coefficient is identified based of the Robin condition at the cooled boundary. Trefftz functions for heat conduction equation in cylindrical dimensionless coordinates has been used to find an approximate solution of the problem. As the internal temperature responses the real data from measurements has been used. The result of calculation is similar to the obtained by the other method.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Buczek A. , Heat transfer on water-spray cooling, Metallurgy and Foundry Engineering, vol. 20, no. 3, 1994, 311-318
[2] Chen S. –J., Tseng A. A. , Spray and jet cooling in steel rolling, Int. J. Heat and Fluid Flow, vol. 13, 1992, 358-369
[3] Heming Ch., Xieqing H., Honggang W. , Calculation of the residual stress of a 45 steel cylinder with a non – linear surface heat – transfer coefficient including phase transformation during quenching, J. Mater. Process. Technol., vol. 89-90, 1999, 339-343
[4] Heming Ch., Xieqing H., Jianbin X. ,Comparision of surface heat – transfer coefficients between various diameter cylinders rapid cooling, J. Mater. Process. Technol., vol. 138, 2003, 399-402
[5] Rivallin J., Vianay S., General principles of controlled water cooling for metallurgical on-line hot rolling processes: forced flow and sprayed surfaces with film boiling regime and rewetting phenomena, Int. J. Therm. Sci. vol. 40, 2001, 263-272
[6] Ruitenberg G., Woldt E., Petford-Long A. K., Comparing the Johnson-Mehl-Avrami-Kolmogorov equations for isothermal and linear heating conditions, Thermochimica Acta, 378, 2001, 97-105.
[7] Sawyer M.L., Jeter M.S., Abel – Khalik S.I. , A critical heat flux correlation for droplet impact cooling, Int. J. Heat Mass Transfer, vol. 40, no. 9, 1997, 2123 – 2131
[8] Sengupta J., Thomas B.G., Wells M.A. , The use of water cooling during the continuous casting of steel and aluminum alloys, Metallurgical and Materials Transactions, vol. 36A, January 2005, 187-204
[9] Stewart I., Massingham J.D., Hagers J.J. , Heat transfer coefficient effects on spray cooling, Iron and Steel Engineer, July 1996, 17-23
[10] Thomas R., Ganes-Pillai M., Aswath P.B., Lawrence K.L., Haji-Sheikh A. , Analytical / finite-element modeling and experimental verification of spray-cooling process in steel, Metallurgical and Materials Transactions, vol. 35, May 1998, 1485- 1498
[11] Buczek A., Zastosowanie brzegowego zagadnienia odwrotnego do identyfikacji współczynnika przejmowania ciepła podczas chłodzenia, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków 2004
[12] Chen R. -H., Chow L. C., Navedo J.E. , Effects of spray characteristics on critical heat flux in subcooled water spray cooling, Int. J. Heat and Mass Transfer, vol. 45, 2002,4033-4043
[13] Ciofalo M., Di Piazza I., Brucato V. , Investigation of the cooling of hot walls by liquid water sprays, Int. J. Heat and Mass Transfer, vol. 42, 1999, 1157-1175
[14] Hsieh S. –S., Fan T. –Ch., Tsai H. –H. , Spray cooling characteristics of water and R-134a. Part II: transient cooling, Int. J. Mass and Heat Transfer, vol. 47, 2004, 5713-5724
[15] Cebo-Rudnicka A., Wpływ warunków chłodzenia oraz przewodności cieplnej wybranych metali na współczynnik wymiany ciepła w procesie chłodzenia natryskiem wodnym, Rozprawa doktorska, Akademia Górniczo-Hutnicza, Kraków 2011
[16] Taler J. , Teoria i praktyka identyfikacji procesów przepływu ciepła, Ossolineum, Wrocław 1995
[17] Beck J.V., Blackwell B., St. Clair Ch. R. Jr. , Inverse Heat Conduction, Ill-posed Problems, A Wiley-Interscience Publication, New York 1985
[18] Ciałkowski MJ, Frąckowiak A, Heat Functions and Their Application for Solving Heat Transfer and Mechanical Problems, Poznań University of Technology Publishers, Poznań, Poland (in Polish), 2000,
[19] Maciag A, Trefftz Functions for Some Direct and Inverse Problems of Mechanics, Kielce University of Technology Publishers, Kielce, Poland (in Polish), 2009
[20] Grysa K, Trefftz Functions and Their Applications in Solving the Inverse Problems, Kielce University of Technology Publishers, Kielce, Poland (in Polish), 2010.
[21] Tichonow A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G. , Numerical methods for solution of the ill-posed problems, Kluwer Academic Publishers, Dordrecht 199
[22] Grysa K., Metody określania liczby Biota i współczynnika przejmowania ciepła. Mech. Teoret. Stos.20, 1/2, 71-86, 1982.
[23] Taler J., Duda P. , Rozwiązywanie prostych i odwrotnych zagadnień przewodzenia ciepła, Wydawnictwa Naukowo-Techniczne, Warszawa 2003
[24] Ciałkowski M.J., Grysa K., On a certain inverse problem of temperature and thermal stresses fields. ActaMechanica, 36, 169-185, 1980.
[25] Grysa K., Ciałkowski M.J., Kamiński H., An inverse temperature field problem in the theory of thermal stresses. Nucl.Eng. Design 64, 2, 169-184, 1981.
[26] Monde M., Analytical method in inverse heat transfer problem using Laplace transform technique.Int. J. Heat and Mass Transfer 43, 3965-3975, 2000.
[27] Ciałkowski M.J., Grysa K., A sequential and global method of solving an inverse problem of heat conduction equation. J. Theoret. Appl. Mech. 48, 1, 1-24, 2010.
[28] Alifanov O.M. , Inverse Heat Transfer Problems, Springer-Verlag, Berlin , 1994
[29] Ciałkowski M.J., Frąckowiak A., Grysa K.,Physical regularization for inverse problems of stationary heat conduction. J. Inv. Ill-Posed Problems 15, 4, 347-364, 2007.
[30] Grysa K., Leśniewska R., Maciąg A.,Energetic approach to direct and inverse heat conduction problems with Trefftz functions used in FEM. CAMES 2008 (15) 3/4: 171-182
[31] Buczek A., Telejko T. , Zastosowanie metody inverse do wyznaczania współczynników równań opisujących warunki brzegowe i przewodzenie ciepła, Materiały 11 Konferencji Informatyk w Technologii Metali, Wydawnictwo Naukowe Akapit, Kraków 2004
[32] Chen S.G., Weng Ch.-I., Lin J. , Inverse estimation of transient temperature distribution in the end quenching test, J. Materials Processing Technology, vol. 86,1999, 257-263
[33] Khachfe R.A., Jarny Y. , Determination of heat sources and heat transfer coefficient for two-dimensonal heat flow- numerical and experimental study, Int.J. Heat and Mass Transfer, vol. 44, 2001, 1309-1322
[34] Khachfe R.A., Jarny Y. , Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques, Numerical Heat Transfer, Part B, vol. 37, 2004, 45-67
[35] Ciałkowski M.J., Frąckowiak A., Grysa K.,Solution of a stationary inverse heat conduction problem by means of Trefftz non-continuous method.Int. J. Heat Mass Transfer 50, 2170-2181, 2007.
[36] Beck J.V. , Nonlinear estimation applied to the nonlinear inverse heat conduction problem, Int. J. Heat and Mass Transfer, vol. 13, 1970, 703-716
[37] Kim T.-G., Lee Z.-H. , Time-varying heat transfer coefficients between tube-shaped casting and metal mold, Int. J. Heat and Mass Transfer, vol. 40, no. 15, 1997, 3513-3525
[38] Mehrotra S.P., Chakravarty A., Singh P. , Determination of the interfacial heat transfer coefficient in a metal-metal system solving the inverse heat conduction problem, Steel Research, vol. 68, no. 5, 1997, 201-208
[39] Kim S.K., Lee J.-S., Lee W.I. , A solution method for a nonlinear three-dimensional inverse heat conduction problem using the sequential gradient method comnined with cubic-spline function specfication, Numerical Heat Transfer, Part B, vol.43, 2003, 43- 61
[40] Kruk B., Metoda współczynników wrażliwości i funkcji cieplnych w rozwiązywaniu zagadnień odwrotnych przewodzenia ciepła. Rozprawa doktorska, Politechnika Poznańska, Poznań 2001.
[41] Oliveira M.S.A., Sousa A.C.M. , Neutral network analysis of experimental data for air/water spray cooling, J. Materials Processing Technology, vol. 113, 2001, 439-445
[42] Grysa K., Maciąg A., Pawińska A., Solving nonlinear direct and inverse problems of stationary heat transfer by using Trefftz functions, International Journal of Heat and Mass Transfer 55 (2012) 7336–7340
[43] Grysa K., Maciejewska B., Trefftz functions for non-stationary problems, J. . Theor. Applied Mech., 51, 2, pp. 251-264, 2013
[44] J.-H. He, Homotopy perturbation technique, Comput. Math. Appl. Mech. Eng. 178 (3–4) (1999) 257–262.
[45] Hetmaniok E., Nowak I., Damian SłotaD., Wituła R., Application of the homotopy perturbation method for the solution of inverse heat conduction problem, Int. Comm. Heat Mass Transfer 39 (2012) 30–35.
[46] Grysa K., Maciąg A., Temperature dependent thermal conductivity determination and sourceidentification for nonlinear heat conduction by means of the Trefftz and homotopy perturbation methods, Int. J. Heat Mass Transfer 100 (2016) 627–633.
[47] Qin QH, The Trefftz Finite and Boundary Element Method, WIT Press, Southampton, Boston, MA, 2000.
[48] Frąckowiak A, Ciałkowski M, Application of Numerical Methods for Heat and Application of Discrete Fourier Transform to Inverse Heat Conduction Problem Regularization, International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 28 Issue: 1, pp.239-253, 2018
[49] Li ZC, Lu, TT, Hu HY, Cheng AHD, The Trefftz and Collocation Methods, WIT Press, Southampton, UK, 2008.
[50] Kołodziej J, Zieliński, AP, Boundary Collocation Techniques and Their Application in Engineering, WIT Press, Southampton, UK, 2009.
[51] Maciąg A., Trefftz function for a plate vibration problem, Journal of Theoretical and Applied Mechanics 2011, Vol. 49, No. 1, pp. 97–116.
[52] Maciąg A., Pawińska A., Solution of the direct and inverse problems for beam, Computational and Applied Mathematics, 35:187–201, 2016
[53] Maciejewska B., Piasecka M., An application of the non-continuous Trefftz method to the determination of heat transfer coefficient for flow boiling in a minichannel, Heat Mass Transf., 53, 4, 2016, 1211-1224.
[54] Maciejewska, B., Piasecka, M., Trefftz function-based thermal solution of inverse problem in unsteady-state flow boiling heat transfer in a minichannel, Int. J. Heat Mass Transf., 107, 2017, 925-933.
[55] Grysa K., Maciąg A., Solving direct and inverse thermoelasticity problems by means of Trefftz base functions for finite element method, Journal of Thermal Stresses, 34 (4), 378 - 393, 2011
[56] Grysa K., Maciąg A., Adamczyk-Krasa J., Trefftz Functions applied to Direct and Inverse Non-Fourier Heat Conduction Problems, Journal of heat transfer-transactions of the ASME, 136, 9, pp. 091302-1 - 091302-9, 2014
[57] Ciałkowski M.J., Grysa K., Trefftz method in solving the inverse problems, Journal of Inverse and Ill-Posed Problems 18(6): 595–616, 2010.
[58] Wróblewska A, Frąckowiak A., Ciałkowski M., ., Regularization of the inverse heat conduction problem by the discrete Fourier transform, Inverse Problems in Science and Engineering, 24(2), 2016, pp. 195 – 212.
[59] Ciałkowski MJ, Frąckowiak A, Thermal and Related Functions Used in Solving Certain Problems of Mechanics, Part I. Solving Some Differential Equations With the Use of Inverse Operator, Modern Problems of Technics, Studies and Materials -Technics 3, J. Mielniczuk and B. Pietrulewicz eds., Univ. of ZielonaGóra Publishers, 2003 : 7–70.
[60] Futakiewicz S., Heat Functions Method for Solving Direct and Inverse Heat Conduction Problems (PhD-Thesis), Poznań University of Technology (1999) (in Polish).
[61] Cebo-RudnickaA., Malinowski Z., Buczek A., The influence of selected parameters of spray cooling and thermalconductivity on heat transfer coefficient, International Journal of Thermal Sciences, 110, 2016, 52-64
[62] Hożejowski L., Grysa K., Marczewski W., Sendek-Matysiak E.Thermal diffusivity estimation from temperature measurements with a use of a thermal probe, Experimental Fluid Mechanics 2009, Proceedings Of The International Conference, vol. 1, 64-72
[63] Sendek E., Study of thermal properties of the medium using the Mupus-Pen thermal probe (PhD Thesis),Kielce University of Technology (2009) (in Polish).
[64] Liu CS, Kuo CL, Jhao WS, The multiple-scale polynomial Trefftz method for solving inverse heat conduction problems, Int. Journal of Heat and Mass Transfer 2016, 95, 936–943.