Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[80570] Artykuł:

Performance evaluation of the TFD-capable dynamic QoS assurance of HD video streaming in well-dimensioned network

Czasopismo: International Journal of Electronics and Telecommunications   Tom: 64, Zeszyt: 3, Strony: 357-364
ISSN:  0867-6747
Opublikowano: 2018
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Agnieszka Chodorek orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Niespoza "N" jednostkiAutomatyka, elektronika, elektrotechnika i technologie kosmiczne5015.00.00  
Robert Ryszard Chodorek Niespoza "N" jednostki50.00.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 15


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science LogoYADDA/CEON    
Keywords:

quality of service assurance  performance evaluation  HD video streaming  heterogeneous IP network  traffic flow description option 



Abstract:

The Traffic Flow Description (TFD) option of the IP protocol is an experimental option, designed by the Authors and described by the IETF’s Internet Draft. This option was intended for signalling for QoS purposes. Knowledge about forthcoming traffic (such as the amount of data that will be transferred in a given period of time) is conveyed in the fields of the option between end-systems. TFD-capable routers on a path (or a multicast tree) between the sender and receiver(s) are able to read this information, process it and use it for bandwidth allocation. If the time horizons are short enough, bandwidth allocation will be performed dynamically. In the paper a performance evaluation of an HD video transmission QoS assured with the use of the TFD option is presented. The analysis was made for a variable number of video streams and a variable number of TCP flows that compete with the videos for the bandwidth of the shared link. Results show that the dynamic bandwidth allocation using the TFD option better assures the QoS of HD video than the classic solution, based on the RSVP protocol.



B   I   B   L   I   O   G   R   A   F   I   A
[1] R. R. Chodorek and A. Chodorek, ”Providing QoS for high definition video transmission using IP Traffic Flow Description option”, In Proc. 8th International Conference on Human System Interactions (HSI), Warsaw, Poland, pp. 102-107, June, 2015.
[2] R. R.Chodorek and A. Chodorek, ”An analysis of the applicability of the TFD IP option for QoS assurance of multiple video streams in a congested network”, In Proc. International Conference on Systems, Signals and Image Processing (IWSSIP), Poznan, Poland, pp. 1-5, May, 2017.
[3] R. R. Chodorek and A. Chodorek, Expanding the Ns-2 Emulation Environment with the Use of Flexible Mapping, In book: Computer Networks, Communications in Computer and Information Science series, (608), pp. 22-31, 2016.
[4] R. R. Chodorek and A. Chodorek, A Linux Kernel Implementation of the Traffic Flow Description Option, In book: Multimedia and Network Information Systems. Proceedings of MISSI 2016 In: Zgrzywa A., Choro K., Siemiski A. (eds) Multimedia and Network Information Systems. Advances in Intelligent Systems and Computing, vol 506. Springer, pp 161-170, 2017.
[5] R. R. Chodorek, An IP option for describing the traffic flow”, IETF Internet Draft draft-chodorek-traffic-flow-option-08, 2017.
[6] R. R. Chodorek and A. Chodorek, ”TFD-Based Dynamic Resource Reservations for SD and HD Video Transmission Over a Multiservice Network”, In: Z. Hippe, J. Kulikowsk, T. Mroczek (eds) Human-Computer Systems Interaction. Advances in Intelligent Systems and Computing, vol 551. Springer, Cham, pp. 181-192, 2018.
[7] R. R. Chodorek and A. Chodorek, ”Traffic flow description based on scene change analysis”, In Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, pp. 138-141, 2016.
[8] R. R. Chodorek and A. Chodorek, ”TFD-capable dynamic QoS assurance using a variable time horizon based on scene changes”, In International Conference on Signals and Electronic Systems (ICSES), Krakow, Poland, pp. 276-281, 2016.
[9] VQEG: VQEG HDTV TIA Source Test Sequences, ftp://vqeg.its. bldrdoc.gov/HDTV/NTIA source/, accessed March 2018.
[10] Parameter values for the HDTV standards for production and international programme exchange, Rec. ITU-R BT.709-6 06/2015.
[11] K. Fall and K. Varadhan, The ns Manual, December 18, 2014, http: //ftp.isi.edu/nsnam/dist/release/rc1/doc/, accessed March 2018.
[12] D. Mahrenholz and I. Svilen, Real-Time Network Emulation with ns-2,” Proceedings of The 8-th IEEE International Symposium on Distributed Simulation and Real Time Applications, Budapest Hungary, 2004.
[13] D. Mahrenholz and I. Svilen, Adjusting the ns-2 Emulation Mode to a Live Network, KiVS’05, Kaiserslautern Germany, 28.02. - 03.03.2005.
[14] VideoLAN - Official page for VLC media player, the Open Source video framework!,” http://www.videolan.org/vlc/, accessed March 2018.
[15] iPerf - The TCP, UDP and SCTP network bandwidth measurement tool, https://iperf.fr/, accessed March 2018.
[16] Definitions of terms related to quality of service”, Rec. ITU-T E.800, 2008.
[17] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, ”An Architecture for Differentiated Services”, RFC 2475, December 1998.
[18] K. Nichols, S. Blake, F. Baker and D. Black, ”Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers”, RFC 2474, December 1998.
[19] Parameter values for the HDTV standards for production and international programme exchange, Rec. ITU-R BT.709-6 06/2015.
[20] S. Floyd and K. Fall, ”Promoting the use of end-to-end congestion control in the Internet”, IEEE/ACM Transactions on Networking (ToN), vol. 7, no. 4, pp. 458-472, 1999.
[21] I. F. Akyildiz, A. Lee, P. Wang, M. Luo and W. Chou, A roadmap for traffic engineering in SDN-OpenFlow networks, Computer Networks, vol. 71, pp. 130, 2014.
[22] H. E. Egilmez, S. Civanlar and A. M. Tekalp, An optimization framework for QoS-enabled adaptive video streaming over OpenFlow networks, IEEE Trans. on Multimedia, vol. 15, no. 3, pp. 710715, 2013.
[23] M. Karakus and A. Durresi, ”Quality of service (QoS) in software defined networking (SDN): A survey”, Journal of Network and Computer Applications, 2016.
[24] A. Mohammed, Y. Solomon, B. Y. Isah and I. Saidu, ”A dynamic QoSaware call admission control algorithm for mobile broadband networks”, In International Conference on Computing Networking and Informatics (ICCNI), pp. 1-5, October, 2017.
[25] W. J. Hwang, T. M. Tai, Y. J. Jhang, Y. C. Tung, C. H. Ho and S. Y. Kuo, ”Quality of Service Management for Home Networks Using Online Service Response Prediction”, IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1773-1786, 2017.
[26] K. T. Bagci and M. Tekalp, ”Dynamic Resource Allocation by Batch-Optimization for Value-Added Video Services over SDN”, IEEE Transactions on Multimedia, 2018.
[27] D. Chitimalla, M. Tornatore, S. S. Lee, H. H. Lee, S. Park, H. S. Chung and B. Mukherjee, ”QoE enhancement schemes for video in converged OFDMA wireless networks and EPONS”, IEEE/OSA Journal of Optical Communications and Networking, vol. 10, no. 3, pp. 229-239, 2018.
[28] T. Banchuen, K. Kawila and K. Rojviboonchai, ”An SDN framework for video conference in inter-domain network”, In 20th International Conference on Advanced Communication Technology (ICACT), pp. 600-605, February, 2018.
[29] R. Atawia, H. S. Hassanein, N. A. Ali and A. Noureldin, ”Utilization of stochastic modelling for green predictive video delivery under network uncertainties”, IEEE Transactions on Green Communications and Networking, 2018.
[30] L. Wei, J. Cai, C.H. Foh and B. He, ”QoS-aware resource allocation for video transcoding in clouds”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 1, pp. 49-61 ,2017.
[31] A. Alasaad, K. Shafiee, H. M. Behairy and V. C. Leung, ”Innovative schemes for resource allocation in the cloud for media streaming applications”, IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 4, pp. 1021-1033, 2015.
[32] A. Armentia, U. Gangoiti, D. Orive and M. Marcos, ”Dynamic QoS Management for Flexible Multimedia Applications”, IFACPapersOnLine, vol. 50, no. 1, pp. 5920-5925, 2017.
[33] X. Xu, M. Tang and Y. C. Tian, ”QoS-guaranteed resource provisioning for cloud-based MapReduce in dynamical environments”, Future Generation Computer Systems, vol. 78, pp. 18-30. 2018.
[34] A. Mendiola, V. Fuentes, J. Matias, J. Astorga, N. Toledo, E. Jacob, and M. Huarte, ”An architecture for dynamic QoS management at Layer 2 for DOCSIS access networks using OpenFlow”, Computer Networks, vol. 94, pp. 112-128, 2016.