Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[89000] Artykuł:

Voltage modelling in ignition coil using magnetic coupling of fractional order

(Modelowanie napięcia w cewce zapłonowej za pomocą sprzężenia magnetycznego rzędu ułamkowego)
Czasopismo: Archives of Electrical Engineering   Tom: 68(2), Zeszyt: (2), Strony: 227-235
ISSN:  1427-4221
Opublikowano: Czerwiec 2019
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Sebastian Różowicz orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne100100.00100.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 100


Pełny tekstPełny tekst     DOI LogoDOI     Web of Science Logo Web of Science    
Słowa kluczowe:

układ zapłonowy  sprzężenie magnetyczne rzędu cząstkowego  metoda CFE  metoda Oustaloupa 


Keywords:

ignition system  fractional-order magnetic coupling  CFE method  Oustaloup  method 



Streszczenie:

Artykuł omawia modelowanie sprzężenia magnetycznego w cewkach zapłonowych za pomocą ułamkowych równań różniczkowych. Zastosowanie sprzężenia ułamkowego pozwala nam rozważyć straty spowodowane przez nieliniowość rdzenia ferromagnetycznego cewki zapłonowej i uzyskać przebieg napięcia wtórnego cewki zapłonowej najbliższy wartościom uzyskanym eksperymentalnie




Abstract:

The paper discusses the modelling of magnetic coupling in ignition coils by fractional differential equations. The use of fractional-order coupling allows us to consider the losses caused by the non-linearity of the ferromagnetic core of the ignition coil and obtain the waveform of the ignition coil’s secondary voltage closest to the values obtained experimentally



B   I   B   L   I   O   G   R   A   F   I   A
[1] Herner A., Herner A., Riehl H.J., Electrotechnics and Electronics in Motor Vehicles (in Polish) (2003).
[2] Różowicz S., Tofil S., The influence of impurities on the operation of selected fuel ignition systems in combustion engines, Archives of Electrical Engineering, vol. 65, no. 2, pp. 349–360 (2016).
[3] Stone C., Brown A., Beckwith P., Cycle-by-cycle variations in spark ignition engine combustion – part II: modelling of flame kernel displacements as a cause of cycle-by-cycle variations, SAE paper 960613 (1996).
[4] Zawadzki A., Różowicz S., Application of input – state of the system transformation for linearization of some nonlinear generators, International Journal of Control, Automation and Systems, vol. 13, no. 3, pp. 1–8 (2015), DOI: 10.1007/s12555-014-0026-3. Vol. 68 (2019) Voltage modelling in ignition coil using magnetic coupling of fractional order 235
[5] Schäfer I., Krüger K., Modelling of lossy coil using fractional derivatives, Journal of Physics D: Applied Physics, vol. 41, pp. 1–8 (2008).
[6] Vorperian V., A fractal model of anomalous losses in ferromagnetic materials, 23rd Annual IEEE Power Electronics Specialists Conference, MAG-28, pp. 1277–1283 (1992).
[7] Zawadzki A., Różowicz S., Application of input-state of the system transformation for linearization of selected electrical circuits, Journal of Electrical Engineering (Elektrotechnicky Casopis), vol. 67, no. 3, pp. 199–205 (2016).
[8] Ostalczyk P., Elements of Fractional Calculus, Publishing House of Łódź University of Technolgy (in Polish) (2008).
[9] Kaczorek T., Rogowski K., Fractional Linear Systems and Electrical Circuits, Białystok University of Technology (2014).
[10] Khovanskii A.N., The application of continued fractions and their generalizations to problems in approximation theory, Noordhoff, The Netherlands (1963).
[11] Różowicz S., Influence of fuel impurities on the consumption of electrodes in spark plugs, Open Physics, vol. 16, iss. 1, pp. 57–62 (2018).
[12] Krishna B.T., Studies on fractional order differentiators and integrators: A survey, Signal Processing 91, pp. 386–426 (2011).
[13] Oustaloup A., Levron F., Mathieu B., Nanot F.M., Frequency-band complex no integer differentiator: characterization and synthesis, EEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 47, iss. 1, pp. 25–39 (2000).
[14] Różowicz S., The effect of different ignition cables on spark plug durability, Przegl ˛ad Elektrotechniczny, vol. 94, iss. 4, pp. 191–195 (2018).
[15] Marushak Y., Kopchak B., Analysis of Models of Fractional Integration and Differentiation (in Polish), Elektrotechnika 34, vol. 2, pp. 213–222 (2015).
[16] Tarimer J.A., Arslan S., Guwen M.E., Investigation for Losses of M19 and Amorphous Core Materials Asynchronous Motor by Finite Elements Methods, Elektronika Ir Elektrotechnika, vol. 18, no. 9, pp. 15–18 (2012), DOI: http://dx.doi.org/10.5755/j01.eee.18.9.2797.
[17] Tarimer J.A., Guwen ME., Arslan S., Computer Aided Design of An Electromagnetic Ignition Coil For High Speed Benzene Engines, Przegl ˛ad Elektrotechniczny, vol. 87, pp. 230–236 (2011), http://pe.org.pl/articles/2011/2/51.
[18] Zawadzki A., Włodarczyk M., CFE method-utility analysis of the approximation of reverse Laplace transform of fractional order, IC SPETO, pp. 45–46 (2015).
[19] Baranowski J., Bauer W., Zagórowska M., Dziwiński T., Pi ˛atek P., Time-domain Oustaloup approximation, Conference paper, Methods and Models in Automation and Robotics (MMAR), 20th International Conference on Mi ˛edzyzdroje, Poland (2015), DOI: 10.1109/MMAR.2015.7283857.
[20] Latawiec K.J., Stanisławski R., Łukaniszyn M., Czuwara W., Rydel M., Fractional-order modeling of electric circuits: modern empiricism vs. classical science, Progress in Applied Electrical Engineering (PAEE) (2017), 10.1109/PAEE.2017.8008998.