Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
Dane niepełne - brak identyfikatora "Web of Science" !

[93880] Artykuł:

Graph of Primitives Matching Problem in the World Wide Web CBIR Searching Using Query by Approximate Shapes

Czasopismo: Distributed Computing and Artificial Intelligence, 16th International Conference, Special Sessions. DCAI 2019. Advances in Intelligent Systems and Computing   Tom: 1004, Strony: 77-84
ISSN:  2194-5365
ISBN:  978-3-319-99608-0
Wydawca:  SPRINGER INTERNATIONAL PUBLISHING AG, GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
Opublikowano: 2019
Seria wydawnicza:  Advances in Intelligent Systems and Computing
Liczba arkuszy wydawniczych:  0.80
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Tomasz Michno orcid logo WEAiIKatedra Systemów Informatycznych *Niespoza "N" jednostkiAutomatyka, elektronika, elektrotechnika i technologie kosmiczne50.00.00  
Roman Stanisław Deniziak orcid logo WEAiIKatedra Systemów Informatycznych *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne50.00.00  

Grupa MNiSW:  Materiały z konferencji międzynarodowej (zarejestrowane w Web of Science)
Punkty MNiSW: 0
Klasyfikacja Web of Science: Proceedings Paper


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

WWW  CBIR  Graphs matching  Graphs of primitives 



Abstract:

The problem of matching two graphs has been considered by many researchers. Our research, the WWW CBIR searching using Query by Approximate Shapes is based on decomposing a query into a graph of primitives, which stores in nodes the type of a primitive with its attributes and in edges the mutual position relations of connected nodes. When the graphs of primitives are stored in a multimedia database used for World Wide Web CBIR searching, the methods of comparisons should be effective because of a very huge number of stored data. Finding such methods was a motivation for this research. In this initial research only the simplest methods are examined: NEH-based, random search-based and Greedy.



B   I   B   L   I   O   G   R   A   F   I   A
1. A graph matching approach based on aggregated search. In: 2017 13th International Conference on 2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Signal-Image Technology & Internet-Based Systems (SITIS), SITIS, p. 376 (2017)
2. Deep learning of graph matching. In: 2018 IEEE/CVF Conference on 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Computer Vision and Pattern Recognition (CVPR), CVPR, p. 2684 (2018)
3. Deniziak, R.S., Michno, T.: World wide web cbir searching using query by approximate shapes. In: Rodríguez, S., Prieto, J., Faria, P., Kłos, S., Fernández, A., Mazuelas, S., Jiménez-López, M.D., Moreno, M.N., Navarro, E.M. (eds.) Distributed Computing and Artificial Intelligence, Special Sessions, 15th International Conference, pp. 87–95. Springer, Cham (2019)
4. Deniziak, S., Michno, T.: New content based image retrieval database structure using query by approximate shapes. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 613–621, September 2017
5. Lin, X., Niu, D., Zhao, X., Yang, B., Zhang, C.: A novel method for graph matching based on belief propagation. Neurocomputing 325, 131–141 (2019)
6. Nawaz, M., Enscore Jr., E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)
7. Pinheiro, M.A., Kybic, J.: Incremental B-spline deformation model for geometric graph matching. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1079–1082, April 2018
8. Plummer, M.D.: Matching theory—a sampler: from Dénes König to the present. Discret. Math. 100(1), 177–219 (1992)
9. Wang, T., Ling, H., Lang, C., Feng, S.: Graph matching with adaptive and branching path following. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2853–2867 (2018)
10. Wu, Y., Gong, M., Ma, W., Wang, S.: High-order graph matching based on ant colony optimization. Neurocomputing 328, 97–104 (2019). Chinese Conference on Computer Vision 2017