Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[99250] Artykuł:

Modeling of Selected Lighting Parameters of LED Panel

(Modelowanie wybranych parametrów oświetleniowych Panel LED)
Czasopismo: Energies   Tom: 13, Zeszyt: 14, Strony: 1-22
ISSN:  1996-1073
Opublikowano: Lipiec 2020
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Krzysztof Baran Niespoza "N" jednostkiAutomatyka, elektronika i elektrotechnika25.00.00  
Henryk Wachta Niespoza "N" jednostkiAutomatyka, elektronika i elektrotechnika25.00.00  
Antoni Różowicz orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Takzaliczony do "N"Automatyka, elektronika i elektrotechnika2570.0070.00  
Sebastian Różowicz orcid logo WEAiIKatedra Elektrotechniki Przemysłowej i Automatyki**Takzaliczony do "N"Automatyka, elektronika i elektrotechnika2570.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

LED panel  lighting parameters  junction temperature  thermal modeling  CFD 



Abstract:

Semiconductor light sources are currently the fastest growing and most energy efficient group of light sources used in lighting technology. Their lighting parameters, such as luminous flux, correlated color temperature and color rendering index depend on the value of the forward current, as well as the temperature of the junction. LED source manufacturers usually specify, in data sheets, the effiect of junction temperature and forward current on the luminous flux for individual light sources. The difficulty, however, is the correct determination of temperature and then lighting parameters, by simulation methods for multi-source lighting systems. Determining the junction temperature which affects lighting parameters is particulary important in the case of LED panels and luminaires, where thermally coupled LED sources shaping the output lighting parameters are in close proximity to each other. Additionally, other factors influencing the temperature distribution of sources, such as the design and geometry of the cooling system, the design of the printed circuit and thermal interface material used, should be considered. The article is a continuation of the publication in this journal where the influence of factors influencing the temperature distribution of the LED panel is presented. The purpose of the research in this article was to confirm the possibility of using CFD (Computational Fluid Dynamics) software, as well as to determine the accuracy of the results obtained in the temperature analysis of the multi-source LED panel, and in determining the output lighting parameters of the LED panel based on it. In this article, based on previously published research, a LED panel model with a cooling system was made, and then the CFD software determined the junction temperature of all light sources. The determined temperature of the LED sources constituted the basis for determining the output lighting parameters of the panel: luminous flux, color temperature and color rendering index. The simulation results were verified by real measurements on the constructed LED panel prototype. The LED panel temperature difference between the simulation results and the real results on the prototype did not exceed 5%. Moreover, the error of lighting parameters between the simulation results obtained and the results on the LED panel prototype in the worst case was 4.36%, which proves the validity and accuracy of simulation studies.



B   I   B   L   I   O   G   R   A   F   I   A
1. Chen, H. Tan, S. Hui, S. Analysis and modeling of high-power phosphor-coated white light-emitting diodes with a large surface area. IEEE Trans. Power Electron. 2015, 30, 3334–3344.
2. Acuna, P.C. Leyre, J. Audenaert, J. Meuret, Y. Deconinck, G. Hanselaer, P. Impact of geometrical and optical parameters on the performance of a cylindrical remote phosphor LED. IEEE Photonics J. 2015, 7.
3. Jagerbrand, A. LED (Light-Emitting Diode) road lighting in practice: An evaluation of compliance with regulations and improvements for further energy savings. Energies 2016, 9, 357.
4. Raychiy, J. Ming-Shiou, T. Ching-Cherng, S. Novel optical lens design with a light scattering freeform inner surface for LED down light illumination. Opt. Express 2015, 23, 16715–16722.
5. Różowicz, A. Leśko, M. Wachta, H. The Technical Possibilities of Losses Reduction in the LED Optical Systems. In Proceedings of the 2016 IEEE Lighting Conference of the Visegrad Countries (LUMEN V4), Karpacz, Poland, 13–16 September 2016 Art. no. 978-1-5090-3305-8/16.
6. Zissis, G. Energy Consumption and Environmental and Economic Impact of Lighting: The Current Situation. In Handbook of Advanced Lighting Technology Springer: Cham, Switzerland, 2016 pp. 1–13.
7. Leśko, M. Różowicz, A. Wachta, H. Różowicz, S. Adaptive luminaire with variable luminous intensity distribution. Energies 2020, 13, 721
8. Czyżewski, D. Comparison of luminance distribution on the lighting surface of power LEDs. Photonics Lett. Pol. 2019, 11, 118–120.
9. Liu, L. Keoleian, G. Saitou, K. Replacement policy of residential lighting optimized for cost, energy,and greenhouse gas emissions. Environ. Res. Lett. 2017, 12, 114034.
10. Barroso, A. Dupuis, P. Alonso, C. Jammes, B. Seguier, L. Zissis, G. A Characterization Framework to Optimize LED Luminaire’s Luminous Ecacy. In Proceedings of the 2015 IEEE Industry Applications Society Annual Meeting, Dallas, TX, USA, 18–22 October 2015 pp. 905–913.
11. Juntunen, E. Tetri, E. Tapaninen, O. Yrjänä, S. Kondratyev, V. Sitomaniemi, A. Siirtola, H. Sarjanoja, E. Aikio, J. Heikkinen, V. A smart LED luminaire for energy savings in pedestrian road lighting. Lighting Res.Technol. 2015, 47, 103–115.
12. Czyżewski, D. Research on Luminance Distributions of Chip-On-Board Light-Emitting Diodes. Crystals 2019, 9, 645.
13. Różowicz, A. Baran, K. Wachta, H. Radiation studies of the illumination lighting luminaires with LED technology. In Proceedings of the 6th IEEE Lighting Conference of the Visegrad Group Countries, Karpacz, Poland, 13–16 September 2016 pp. 1–4.
14. Lasance, C. Poppe, A. Thermal Management for LED Applications Springer Science, Business Media: New York, NY, USA, 2014.
15. Yang, K. Chung, C. Tu, C.Wong, C. Yang, T. Lee, M. Thermal spreading resistance characteristics of a high power light emitting diode module. Appl. Ther. Eng. 2014, 70, 361–368.
16. Hui, S. Li, S. Tao, X. Chen,W. Ng,W. A novel passive o ine LED driver with long lifetime. IEEE Trans. Power Electron. 2010, 25, 2665–2672.
17. Hsu, H.-C. Huang, Y.-C. Numerical simulation and experimental validation for the thermal analysis of a compact led recessed downlight with heat sink design. Appl. Sci. 2017, 7, 4.
18. Ye, H. Koh, S.W. van Zeijl, H.W. Gielen, S. Zhang, G. A review of passive thermal management of LED module. J. Semicond. 2011, 32.
19. Guo, Y. Pan, K. Ren, G. Yuan, F. Research on LED Temperature Characteristic and Thermal Analysis at Low Temperatures. In Proceedings of the International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, China, 13–16 August 2012 pp. 1411–1415.
20. Scheepers, G. Visser, J. Detailed Thermal Modeling of High Powered LEDs. In Proceedings of the 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 15–19 March 2009 pp. 87–91.
21. Pounds, D. Bonner, R. High heat flux heat pipes embedded in metal core printed circuit boards for LED thermal management. In Proceedings of the 14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 27–30 May 2014 pp. 267–271.
22. Yurtseven, M.B. Mete, S. Onaygil, S. The effects of temperature and driving current on the key parameters of commercially available high-power white LEDs. Lighting Res. Technol. 2016, 48, 943–965.
23. Baran, K. Różowicz, A. Wachta, H. Różowicz, S. Mazur, D. Thermal analysis of the factors influencing junction temperature of LED panel sources. Energies 2019, 12, 3941.
24. Shen, Q. Sun, D. Xu, Y. Jin, T. Zhao, X. Orientation effects on natural convection heat dissipation of rectangular fin heat sinks mounted on LEDs. Int. J. Heat Mass Transf. 2014, 75, 462–469.
25. Tzeng, S. Jeng, T. Wang, Y. The cooling design of a high-speed rotating axis with ribbed turbulators. IJETI 2013, 3, 38–48.
26. Costa, V. Lopes, A. Improved radial heat sink for led lamp cooling. Appl. Ther. Eng. 2014, 70, 131–138.
27. Huang, Y.-S. Luo,W.-C.Wang, H.-C. Feng, S.-W. Kuo, C.-T. Lu, C.-M. How smart LEDs lighting benefit color temperature and luminosity transformation. Energies 2017, 10, 518.
28. Ron, H. Photo-Electro-Thermal Theory for LEDSystems. In Basic Theory and Application Cambridge University Press: Cambridge, UK, 2017.
29. Hyunjong, K. Kyoung, J. Yeonwon, L. Thermal Performance of Smart Heat Sinks for Cooling High Power LED Modules. In Proceedings of the 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, CA, USA, 30 May–1 June 2012.
30. Gupta, D. Venkataraman, V. Nimje, R. CFD& Thermal Analysis of Heat Sink and its Application in CPU.Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 198–202.
31. Cao, J. Study on Three-imensional Numerical Simulation of the Influence of Fin Spacing on the Power of Heat Sink and Heat Dissipation. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011.
32. Yieang, H. Shengnan, S. Hui, L. Yunjie, G. Improved Thermal Design of Fin Heat Sink for High-Power LED Lamp Cooling. In Proceedings of the 17th International Conference on Electronic Packaging Technology, Wuhan, China, 16–19 August 2016 pp. 1069–1074.
33. Min,W. Seung,W. Yongchan, K. Optimal thermal design of a horizontal fin heat sink with a modified-opening model mounted on an LED module. Appl. Therm. Eng. 2015, 91, 105–115.
34. Teeba, N. Anithambigai, P. Dinash, K. Mutharasu, D. Influence of the Heat Sink Orientation and Fins Arrangement on the Thermal Behavior of High Power LED. In Proceedings of the The 3rd Asia Symposium on Quality Electronic Design, Kuala Lumpur, Malaysia, 19–20 July 2011 pp. 21–24.
35. Rong, W. Jung, W. Analyzing the structural designs and thermal performance of nonmetal lighting devices of LED bulbs. Int. J. Heat Mass Transf. 2016, 99, 750–761.
36. Mawby, P.A. Igic, P.M. Towers, M.S. Physically based compact device models for circuit modeling applications. Microelectr. J. 2001, 32, 433–447.
37. Menozzi, R. Cova, P. Delmonte, N. Giuliani, F. Sozzi, G. Thermal and electrothermal modeling of components and systems: Review of the research at the University of Parma. Facta Univ. Ser. Electron. Energetics 2015, 28, 325–344.
38. Janicki, M. Torzewicz, T. Ptak, P. Raszkowski, T. Samson, A. Górecki, K. Parametric compact thermal models of power LEDs. Energies 2019, 12, 1724.
39. Poppe, A. Simulation of LED based luminaires by using multi-domain compact models of LEDs and compact thermal models of their thermal environment. Microelectron. Reliab. 2017, 72, 65–74.
40. Chen, H. Lin, S. Xiong, C. Analysis and modeling of thermal effect and optical characteristic of LED systems with parallel plate-fin heatsink. IEEE Photonics J. 2017, 9.
41. Cuntala, J. Kondelova, A. Hock, O. Pridala, M. Electro-Thermal Modeling of Power LED Using.COMSOL Environment. In Proceedings of the 11th International Conference ELEKTRO, Strbske Pleso, Slovakia, 16–18 May 2016
pp. 127–130.
42. GL Opti Spheres. Available online: http://www.gloptic.com/wpcontent/uploads/2018/08/200931_Technical- Datasheet_SPHEREs.pdf (accessed on 3 January 2020).
43. GL Spectis 6,0. Available online: http://www.gloptic.com/wp-content/uploads/2018/08/200930_Technical- Datasheet_SPECTIS-6-0.pdf (accessed on 3 January 2020).
44. 5305 TECSource Arroy Instruments. Available online: http://www.arroyoinstruments.com/products/5305# tabs (accessed on 3 January 2020).
45. Houser, K. Mistrick, K. Stey, G. Dlaura, D. The Lighting Handbook: Reference and Application, 10th ed. Illuminating Engineering Society of North America (IES): New York, NY, USA, 2011.
46. Liu, S. Luo, X. LED Packaging for Lighting Applications: Design, Manufacturing and Testing John Wiley & Sons Pte Ltd.: Singapore, 2011.
47. Min, S. Thermal Analysis of High Power LED Arrays. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2009.
48. Palisoc, A. Lee, C. Thermal-properties of the multilayer infinite-plate structure. J. Appl. Phys. 1988, 64, 410–415.
49. Masana, F. A new approach to the dynamic thermal modelling of semiconductor packages. Microelectron. Reliab.2001, 41, 901–912.
50. Muzychka, Y. Culham, R. Yovanovich, M. Thermal spreading resistance of eccentric heat sources on rectangular flux channels. ASME J. Electron. Packag. 2003, 125, 178–185.
51. FloEFD. Technical Reference, Software Version 16, Mentor Graphics Mentor Graphics Corporation: Wilsonville, OR, USA, 2016.
52. Chein, R. Chen, J. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance. Int. J. Ther. Sci. 2009, 48, 1627–1638.
53. Della Torre, A. Motenegro, G. Onorati, A. Khadilkar, S. Icarelli, R. Multi-scale CFD modeling of plate heat exchangers including O set-strip fins and Dimple-Type Turbulators for automotive applications. Energies 2019, 12, 2965.
54. FloEFD Engineering Database. Available online: https://www.mentor.com/products/mechanical/floefd/(accessed on 3 January 2020).
55. Torzewicz, T. Baran, K. Raszkowski, T. Samson, A.Wachta, H. Napieralski, A. Compact Thermal Modeling of Power LED Light Source. In Proceedings of the IEEE 30th International Conference on Microelectronics (MIEL), Nis, Serbia, 9–11 October 2017 pp. 157–160.
56. JEDEC STANDARD. Transient Dual Interface Test Method for the Measurement of the Thermal Resistance Junction-to-Case of Semiconductor Devices with Heat Flow through a Single Path
JESD51-14 JEDEC Solid State Technology Association: Arlington, VA, USA, 2010.
57. Baran, K. Wachta, H. Leśko, M. Różowicz, A. Research on thermal resistance Rthj-c of high power semiconductor light sources. In Proceedings of the 15th Conference on Computational Technologies in Engineering, AIP Conference Proceedings 2078, Mikołajki, Poland, 16–19 October 2018 p. 020047.
58. L200-TC Labfacility 8-Channel Laboratory Temperature Monitor. Available online: https://www.labfacility. com/media/productattach/d/a/datasheet_-_l200.pdf (accessed on 3 January 2020).
59. Konica Minolta Spectroradiometer CS-2000. Available online: https://www.konicaminolta.com/instruments/download/instruction_manual/display/pdf/cs-2000-2002a_instruction_eng.pdf (accessed on 3 January 2020).