Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[139530] Artykuł:

Effect of Synthetic Wax on Rheological Properties of Polymr-Modified Bitumen

Czasopismo: Materials   Tom: 18, Zeszyt: 3067, Strony: 1-28
ISSN:  1996-1944
Opublikowano: 2025
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Marek Iwański orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3549.0070.00  
Małgorzata Cholewińska orcid logo WBiAKatedra Inżynierii KomunikacyjnejNiespoza "N" jednostkiInżynieria lądowa, geodezja i transport3549.00.00  
Grzegorz Mazurek orcid logo WBiAKatedra Inżynierii KomunikacyjnejTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3042.0070.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

polymer-modified bitumen  synthetic wax  rheological properties  bitumen aging  morphology 



Abstract:

The goal of this study is to evaluate how the inclusion of synthetic wax, added in 0.5% increments from 1.5% to 3.5%, affects the characteristics of PMB 45/80-65 (polymer-modified bitumen) during both short-term (RTFOT) and long-term (PAV) aging processes. Tests were carried out to assess the fundamental properties of the binder, leading to the determination of the penetration index (PI) and the plasticity range (PR). The binder’s properties were examined at below-freezing operating temperatures, with creep stiffness measured using a bent beam rheometer (BBR) at −10 ◦C, −16◦ C, −22 ◦C, and −28 ◦C. The rheological properties of the asphaltenes were evaluated based on both linear and nonlinear viscoelasticity. The experimental study explored temperature effects on the rheological properties of composite materials using a DSR dynamic shear rheometer at 40 ◦C, 60 ◦C, and 80 ◦C over afrequency range of 0.005 to 10 Hz. The main parameters of interest were composite viscosity (η*) and zero shear viscosity (η0). Viscoelastic parameters, including the dynamic modulus (G*) and phase shift angle (δ), were determined, and Black’s curves were used to illustrate the relationship between these parameters, where G*/sinδ was determined. The MSCR test was employed to investigate the impact of bitumen on the asphalt mixture’s resistance to permanent deformation and to assess the degree and efficacy of asphalt modification. The test measured two parameters, irreversible creep compliance (Jnr) and recovery (R), under
stress levels of 0.1 kPa (LVE) and 3.2 kPa (N-LVE). The Christensen–Anderson–Marasteanu model was used to describe the bitumen behavior during binder aging, as reflected in the rheological study results. Ultimately, this study revealed that synthetic wax influences the rheological properties of PMB 45/80-65 polymer bitumen. Specifically, it mitigated the stiffness reduction in modified bitumen caused by polymer degradation during aging at an amount less than 2.5% of synthetic wax.



B   I   B   L   I   O   G   R   A   F   I   A
1. Wong, W.G.
Li, G. Analysis of the effect of wax content on bitumen under performance grade classification. Constr. Build. Mater.
2009, 23, 2504–2510. [CrossRef]
2. Iwa ´nski, M.
Mazurek, G. The influence of the low-viscosity modifier on viscoelasticity behavior of the bitumen at high operational
temperature. In Proceedings of the 8th International Conference Environmental Engineering, Vilnius, Lithuania, 19–20 May 2011

Volume 1–3, pp. 1097–1102.
3. Król, J.
Kowalski, K.
Radziszewski, P. Rheological behavior of n-alkane modified bitumen in aspect of Warm Mix Asphalt
technology. Constr. Build. Mater. 2015, 93, 703–710. [CrossRef]
4. Leng, Z.
Gamez, A.
Al-Qadi, I.L. Mechanical property characterization of warm-mix asphalt prepared with chemical additives.
J. Mater. Civil Engin. 2014, 26, 304–311. [CrossRef]
5. Ai, C.
Li, O.J.
Qiu, Y. Testing and assessing the performance of a new warm mix asphalt with SMC. J. Traf. Transport. Eng. 2015, 2,
399–405. [CrossRef]
6. Rubio, M.C.
Martínez, G.
Baena, L.
Moreno, F. Warm Mix Asphalt: An Overview. J. Clean. Prod. 2012, 24, 76–84. [CrossRef]
7. Van De Ven, M.F.C.
Jenkins, K.J.
Voskuilen, J.L.M.
Van Den Beemt, R. Development of (half-) warm foamed bitumen mixes:
State of the art. Int. J. Pavement Eng. 2007, 8, 163–175. [CrossRef]
Materials 2025, 18, 3067 25 of 27
8. Chomicz-Kowalska, A.
Gardziejczyk, W.
Iwa ´nski, M.M. Analysis of IT-CY stiffness modulus of foamed bitumen asphalt concrete
compacted at 95 ◦C. In Proceedings of the 12th International Scientific Conference of Modern Building Materials, Structures and
Techniques (MBMST), Vilius, Lithuania, 16–18 May 2017
Volume 172, pp. 550–559. [CrossRef]
9. Jenkins, K.J.
de Groot, J.L.A.
Van de Ven, M.F.C.
Molenaar, A. Half-warm foamed bitumen treatment, a new process. In
Proceedings of the 7th Conference on Asphalt Pavements for Southern Africa, Victoria Falls, Zimbabwe, 29 August–2 September
1999.
10. Hugo Silva, M.R.D.
Oliveira, J.R.M.
Peralta, J.
Zooro, S.E. Optimization of warm mix asphalt using different blends of binders
and synthetic paraffin wax contents. Constr. Build. Mater. 2010, 24, 1621–1631. [CrossRef]
11. Iwa ´nski, M.
Mazurek, G. Effect of Fischer-Tropsch synthetic wax additive on the functional properties of bitumen. Polimery 2015,
60, 272–278. [CrossRef]
12. Butz, T.
Rahimian, I.
Hildebrand, G. Modification of road bitumens with the Fischer-Tropsch Paraffin Sasobit. J. Appl. Asphalt
Binder Technol. 2001, 1, 70–86.
13. Vaitkus, A.
Cygas, D.
Laurinaviˇcius, A.
Perveneckas, Z. Analysis Evaluation of Possibilities for The Use of Warm Mix Asphalt ˇ
in Lithuana Balt. J. Road Bridge Eng. 2009, IV, 80–86. [CrossRef]
14. Sanchez-Alonso, E.
Vega-Zamanillo, A.
Castro-Fresno, D.
Del Rio-Prat, M. Evaluation of compactability and mechanical
properties of bituminous mixes with warm additives. Constr. Build. Mater. 2011, 25, 2304–2311. [CrossRef]
15. Sukhija, M.
Saboo, N. A comprehensive review of warm mix asphalt mixtures-laboratory to field. Constr. Build. Mater. 2021, 274,
121781. [CrossRef]
16. Iwa´nski, M.M. Synergistic Effect of F–T Synthetic Wax and Surface-Active Agent Content on the Properties and Foaming
Characteristics of Bitumen. Materials 2021, 14, 300. [CrossRef] [PubMed]
17. Iwa´nski, M.M.
Durlej, M.
Janus, K.
Horodecka, R. The Effect of Synthetic Wax and Surface-Active Agent on the Aging and
Low-Temperature Properties of 50/70 Bitumen Before and After Foaming. Roads Bridges—Drog. Mosty 2024, 23, 311–329.
[CrossRef]
18. Sengoz, B.
Topa, A.
Gorkem, C. Evaluation of natural zeolite as warm mix asphalt additive and its comparison with other warm
mix additives. Constr. Build. Mater. 2013, 43, 242–252. [CrossRef]
19. Woszuk, A.
Franus, W. Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Constr. Build.
Mater. 2016, 114, 556–563. [CrossRef]
20. Chomicz-Kowalska, A.
Maciejewski, K.
Iwa ´nski, M.M. Study of the Simultaneous Utilization of Mechanical Water Foaming and
Zeolites and Their Effects on the Properties of Warm Mix Asphalt Concrete. Materials 2020, 13, 357. [CrossRef]
21. Yu, X.
Wang, Y.
Luo, T. Impacts of water content on rheological properties and performance-related behaviours of foamed
war-mix asphalt. Constr. Build. Mater. 2013, 48, 203–209. [CrossRef]
22. Wang, H.
Zhao, K.
Glover, C.
Chen, L.
Wen, Y.
Chong, D.
Hu, C. Effects of aging on the properties of asphalt at the nanoscale.
Constr. Build. Mater. 2015, 80, 244–254. [CrossRef]
23. Muthen, K.M. Foamed Asphalt Mixes. Mix Design Procedure
Contract Report No. CR 98/077
Sabita Ltd.: Ho Chi Minh City,
Vietnam
CSIR Transportek: Pretoria, South Africa, 2009.
24. Mirza, M.W.
Witczak, M.W. Development of a Global Aging System for Short- and LongTerm Aging of Asphalt Cements. J.
Assoc. Asph. Paving Technol. 1995, 64, 393–431.
25. Rossi, C.O.
Caputo, P.
Ashimova, S.
Fabozzi, A.
D’Errico, G.
Angelico, R. Effects of natural antioxidant agents on the bitumen
aging process: An EPR and rheological investigation. Appl. Sci. 2018, 8, 1405. [CrossRef]
26. Dickinson, E.J. Prediction of the Hardening of the Bitumen in Pavement Surfacing by Reaction with Atmospheric Oxygen. Road
Mater. Pavement Des. 2000, 1, 255–279. [CrossRef]
27. Malinowski, S.
Woszuk, A.
Franus, W. Modern two-component modifiers the aging process of road bitumen. Constr. Build.
Mater. 2023, 409, 133838. [CrossRef]
28. Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability
Relationships
Transportation Research Circular Number E-C140
Transportation Research Board: Washington, DC, USA, 2009.
29. Tauste, R.
Moreno-Navarro, F.
Sol-Sanchez, M.
Rubio-Gamez, M.C. Understanding the bitumen ageing phenomenon: A review.
Constr. Build. Mater. 2018, 192, 593–609. [CrossRef]
30. Camargo, I.
Mirwald, I.
Hofko, B.
Grothe, H. Effect of thermal and oxidative aging on asphalt binders rheology and chemical
composition. Materials 2020, 13, 4438. [CrossRef]
31. Gamarra, A.
Ossa, E.A. Thermo-oxidative aging of bitumen. Int. J. Pavement Eng. 2018, 19, 641–650. [CrossRef]
32. Gawel, I.
Czechowski, F.
Kosno, J. An environmental friendly anti-ageing additive to bitumen. Constr. Build. Mater. 2016, 110,
42–47. [CrossRef]
33. Ren, S.
Liu, X.
Lin, P.
Jing, R.
Erkens, S. Toward the long-term aging influence novel reaction kinetics models of bitumen. Int. J.
Pavement Eng. 2023, 24, 2024188. [CrossRef]
Materials 2025, 18, 3067 26 of 27
34. Generalna Dyrekcja Dróg i Autostrad [General Directorate for National Roads and Motorways]. Katalog Typowych Nawierzchni
Podatnych i Półsztywnych [Catalog of Typical Susceptible and Semi-Rigid Paving Structures]
Generalna Dyrekcja Dróg i Autostrad
[General Directorate for National Roads and Motorways]: Warsaw, Poland, 2014
p. 112.
35. Sasobit. Available online: https://www.sasobit.com/files/downloads/PDF_070722/0376SAS-Sasobit-OP-Flyer_en_LR.pdf
(accessed on 21 September 2023).
36. EN 12594:2014
Bitumens and Bituminous Binders—Preparation of Test Samples. European Committee for Standardization:
Brussels, Belgium, 2014.
37. Stuart, K.D.
Izzo, R.P. Correlation of Superpave G*/sin(delta) with rutting susceptibility from laboratory mixture tests (with
discussion and closure). Transp. Res. Rec. 1995, 1492, 176–183.
38. EN 12607-1:2014
Bitumen and Bituminous Binders—Determination of the Resistance to Hardening Under Influence of Heat and
Air—Part 1: RTFOT Method. European Committee for Standardization: Brussels, Belgium, 2014.
39. EN 14769:2023
Bitumen and Bituminous Binders—Accelerated Long-Term Ageing Conditioning by a Pressure Ageing Vessel
(PAV). European Committee for Standardization: Brussels, Belgium, 2023.
40. EN 1426:2015-08
Bitumen and Bituminous Binders—Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
41. EN 1427:2015-08
Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method. European
Committee for Standardization: Brussels, Belgium, 2015.
42. EN 12591:2009
Bitumen and Bituminous Binders—Specifications for Paving Grade Bitumens. European Committee for Standardization: Brussels, Belgium, 2009.
43. EN 12593:2015
Bitumen and Bituminous Binders—Determination of the Fraass Breaking Point. European Committee for
Standardization: Brussels, Belgium, 2015.
44. EN 14771
Bitumen and Bituminous Binders—Determination of the Flexural Creep Stiffness—Bending Beam Rheometer (BBR).
European Committee for Standardization: Brussels, Belgium, 2012.
45. Christensen, D.W.
Anderson, D.A.
Rowe, G.M. Relaxation spectra of asphalt binders and the Christensen–Anderson rheological
model. Road Mater. Pavement Des. 2017, 18 (Suppl. S1), 382–403. [CrossRef]
46. Marasteanu, M.O.
Anderson, D.A. Improved model for bitumen rheological characterization. In Eurobitume Workshop on
Performance Related Properties for Bituminous Binders
European Bitumen Association: Brussels, Belgium, 1999
Volume 133.
47. Zeng, M.
Bahia, H.U.
Zhai, H.
Anderson, M.R.
Turner, P. Rheological modeling of modified asphalt binders mixtures (with
discussion). J. Assoc. Asphalt Paving Technol. 2001, 70, 403–441.
48. Lazi´c, Ž.R. Design of Experiments in Chemical Engineering: A Practical Guide
Wiley-VCH: Weinheim, Germany, 2004.
49. Montgomery, D.M. Design and Analysis of Experiments, 8th ed.
John Wiley & Son Inc.: Hoboken, NJ, USA, 2013.
50. STATISTICA 13.3. Statsoft. Available online: www.statsoft.com (accessed on 20 August 2019).
51. Błazejewski, K.
Styk, S. ˙ Technologia Warstw Asfaltowych
Wydawnictwa Komunikacji i Ł ˛aczno´sci: Warszawa, Poland, 2004.
52. Gaweł, I.
Kalabi ´nska, M.
Piłat, J. Asfalty Drogowe
Wydawnictwa Komunikacji i Ł ˛aczno´sci: Warszawa, Poland, 2014.
53. Kołodziej, K.
Bichajło, L. Lepko´s´c zerowego ´scinania asfaltu 35/50 z dodatkiem asfaltu naturalnego Trynidad Epure (TE). Mater.
Bud. 2017, 8, 68–70. [CrossRef]
54. Golchin, B.
Hamzah, M.O.
Omranian, S.R.
Hasan, M.R. Effects of a surfactant-wax based warm additive on high temperature
rheological properties of asphalt binders. Constr. Build. Mater. 2018, 183, 395–407. [CrossRef]
55. Morea, F.
Zerbino, R.
Agnusdei, J. Improvements on asphalt mixtures rutting performance characterization by the use of low
shear viscosity. Mater. Struct. 2013, 46, 267–276. [CrossRef]
56. Biro, S.
Gandhi, T.
Amirkhanim, S. Determination of zero shear viscosity of warm asphalt binder. Constr. Build. Mater. 2009, 23,
2080–2086. [CrossRef]
57. Zoorob, S.E.
Oliveira, L.A. Assessing low shear viscosity as the new bitumen Softening Point test. Constr. Build. Mater. 2012, 27,
357–367. [CrossRef]
58. Lu, X.
Isacsson, U. Chemical and rheological evaluation of ageing properties of SBS polymer modified bitumens. Fuel 1998, 77,
961–972. [CrossRef]
59. Airey, G.D. Rheological properties of styrene butadiene styrene polymer modified road bitumens. Fuel 2003, 82, 1709–1719.
[CrossRef]
60. AASHTO TP70:2013
Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a
Dynamic Shear Rheometer (DSR). AASHTO: Washington, DC, USA, 2013.
61. EN 16659:2015
Bitumen and Bituminous Binders—Multiple Stress Creep and Recovery Test (MSCRT). European Committee for
Standardization: Brussels, Belgium, 2015.
62. Dreessen, S.
Planche, J.P.
Gardel, V. A new performance related test method for rutting prediction: MSCRT. In Advanced Testing
and Characterization of Bituminous Materials
Taylor & Francis Group: London, UK, 2009
Volume 1, pp. 971–980.
63. D’Angelo, J. The Relationship of the MSCR Test to Rutting. Road Mater. Pavement Des. 2009, 10, 61–80. [CrossRef]
Materials 2025, 18, 3067 27 of 27
64. Asphalt Institute. Implementation of the Multiple Stress Creep Recovery Test and Specification
Asphalt Institute Guidance Document

Asphalt Institute: Lexington, KY, USA, 2010.
65. Anderson, R.M. Understanding the MSCR Test and Its Use in the PG Asphalt Binder Specification
Presentation
Asphalt Institute:
Lexington, KY, USA, 2011.
66. Chapra Steven, C.
Canale Raymond, P. Numerical Methods for Engineers, 6th ed.
Mc Graw-Hill: New York, NY, USA, 2010.
67. Marasteanu, M.
Anderson, D.A. Time Temperature Dependency of Asphalt Binders—An Improved Model. J. Assoc. Asph. Paving
Technol. 1996, 65, 407–448.
68. Jing, R.
Varveri, A.
Liu, X.
Scarpas, A.
Erkens, S. Rheological, fatigue and relaxation properties of aged bitumen. Int. J. Pavement
Eng. 2019, 21, 1024–1033. [CrossRef]
69. Johansson, L.S.
Lu, X.
Isacsson, U. Ageing of Road Bitumens—State of the Art
Technical Report No. TRITA-IP FR 98-36
Royal
Institute of Technology: Stockholm, Sweden, 1998.
70. Lu, X.
Talon, Y.
Redelius, P. Aging of Bituminous Binders—Laboratory Tests and Field Data. In Proceedings of the 4th Eurasphalt
& Eurobitume Congress, Copenhagen, Denmark, 21–23 May 2008.