Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1286
Publikacje
Pomoc (F2)
[140330] Artykuł:

A Review of Earth-Air Heat Exchangers: From Fundamental Principles to Hybrid Systems with Renewable Energy Integration

Czasopismo: Energies   Tom: 18, Zeszyt: 6, Strony: 1017
ISSN:  1996-1073
Opublikowano: Marzec 2025
Liczba arkuszy wydawniczych:  2.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Hanna Koshlak orcid logo WiŚGiEKatedra Inżynierii SanitarnejTakzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka100140.00140.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

earth-air heat exchanger  renewable energy  sustainable building  HVAC systems 



Abstract: Earth-Air Heat Exchangers (EAHEs) provide a compelling solution for improving building energy efficiency by harnessing the stable subterranean temperature to pre-treat ventilation air. This comprehensive review delves into the foundational principles of EAHE operation, meticulously examining heat and mass transfer phenomena at the ground-air interface. This study meticulously investigates the impact of key factors, including soil characteristics, climatic conditions, and crucial system design parameters, on overall system performance. Beyond independent applications, this review explores the integration of EAHEs with a diverse array of renewable energy technologies, such as air-source heat pumps, photovoltaic thermal (PVT) panels, wind turbines, fogging systems, water spray channels, solar chimneys, and photovoltaic systems. This exploration aims to clarify the potential of hybrid systems in achieving enhanced energy efficiency, minimizing environmental impact, and improving the overall robustness of the system.



B   I   B   L   I   O   G   R   A   F   I   A
Wingrove, K.
Heffernan, E.
Daly, D. Increased home energy use: Unintended outcomes of energy efficiency focused policy. Build. Res. Inf. 2024, 52, 577–595. [Google Scholar] [CrossRef]
Deroubaix, A.
Labuhn, I.
Camredon, M.
Gaubert, B.
Monerie, P.A.
Popp, M.
Siour, G. Large uncertainties in trends of energy demand for heating and cooling under climate change. Nat. Commun. 2021, 12, 5197. [Google Scholar] [CrossRef]
United Nations Environment Programme. Global Status Report for Buildings and Construction: Beyond Foundations: MAINSTREAMING Sustainable Solutions to Cut Emissions from the Buildings Sector. Nairobi 2024. Available online: https://wedocs.unep.org/20.500.11822/45095 (accessed on 4 December 2024).
Arowoiya, V.A.
Onososen, A.O.
Moehler, R.C.
Fang, Y. Influence of Thermal Comfort on Energy Consumption for Building Occupants: The Current State of the Art. Buildings 2024, 14, 1310. [Google Scholar] [CrossRef]
IEA. Tracking Clean Energy Progress 2023
IEA: Paris, France, 2023
Available online: https://www.iea.org/reports/tracking-clean-energy-progress-2023 (accessed on 4 December 2024).
IEA. Southeast Asia Energy Outlook 2024
IEA: Paris, France, 2024
Available online: https://www.iea.org/reports/southeast-asia-energy-outlook-2024 (accessed on 4 December 2024).
Santamouris, M.
Vasilakopoulou, K. Present and future energy consumption of buildings: Challenges and opportunities towards decarbonization. E-Prime—Adv. Electr. Eng. Electron. Energy 2021, 1, 100002. [Google Scholar] [CrossRef]
Damm, A.
Köberl, J.
Prettenthaler, F.
Rogler, N.
Töglhofer, C. Impacts of + 2 °C global warming on electricity demand in Europe. Clim. Serv. 2017, 7, 12–30. [Google Scholar] [CrossRef]
IEA. World Energy Outlook
IEA: Paris, France, 2022
Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 15 May 2023).
Gonçalves, A.C.R.
Costoya, X.
Nieto, R.
Liberato, M.L.R. Extreme weather events on energy systems: A comprehensive review on impacts, mitigation, and adaptation measures. Sustain. Energy Res. 2024, 11, 4. [Google Scholar] [CrossRef]
Li, D.H.W.
Yang, L.
Lam, J.C. Impact of climate change on energy use in the built environment in different climate zones—A review. Energy 2012, 42, 103–112. [Google Scholar] [CrossRef]
Salata, F.
Falasca, S.
Ciancio, V.
Curci, G.
de Wilde, P. Climate-change related evolution of future building cooling energy demand in a Mediterranean Country. Energy Build. 2023, 290, 113112. [Google Scholar] [CrossRef]
Gao, K.
Fong, K.F.
Lee, C.K.
Lau, K.K.-L.
Ng, E. Balancing thermal comfort and energy efficiency in high-rise public housing in Hong Kong: Insights and recommendations. J. Clean. Prod. 2024, 437, 140741. [Google Scholar] [CrossRef]
Santamouris, M. Chapter 2—Energy Consumption and Environmental Quality of the Building Sector. In Minimizing Energy Consumption, Energy Poverty and Global and Local Climate Change in the Built Environment: Innovating to Zero
Santamouris, M., Ed.
Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
Xu, X.
Yu, H.
Sun, Q.
Tam, V.W.Y. A critical review of occupant energy consumption behavior in buildings: How we got here, where we are, and where we are headed. Renew. Sustain. Energy Rev. 2023, 182, 113396. [Google Scholar] [CrossRef]
Bisoniya, T.S.
Kumar, A.
Baredar, P.V. Experimental and analytical studies of earth–air heat exchanger (EAHE) systems in India: A review. Renew. Sustain. Energy Rev. 2013, 19, 238–246. [Google Scholar] [CrossRef]
Basok, B.
Davydenko, B.
Pavlenko, A.M. Numerical network modeling of heat and moisture transfer through capillary-porous building materials. Materials 2021, 14, 1819. [Google Scholar] [CrossRef] [PubMed]
Bordoloi, N.
Sharma, A.
Nautiyal, H.
Goel, V. An intense review on the latest advancements of Earth Air Heat Exchangers. Renew. Sustain. Energy Rev. 2018, 89, 261–280. [Google Scholar] [CrossRef]
Bughio, M.
Ba-hale, S.
Mahar, W.A.
Schuetze, T. Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates. Energies 2022, 15, 7054. [Google Scholar] [CrossRef]
Zhang, C.
Wang, J.
Li, L.
Wang, F.
Gang, W. Utilization of Earth-to-Air Heat Exchanger to Pre-Cool/Heat Ventilation Air and Its Annual Energy Performance Evaluation: A Case Study. Sustainability 2020, 12, 8330. [Google Scholar] [CrossRef]
Mohammadi, S.
Jahang-ir, M.H. Numerical investigation of the saturating soil layers’ effect on air temperature drops along the pipe of Earth-Air Heat Exchanger systems in heating applications. Geothermics 2024, 123, 103109. [Google Scholar] [CrossRef]
Yue, Y.
Yan, Z.
NI, P.
Lei, F.
Qin, G. Enhancing the performance of earth-air heat exchanger: A flexible multi-objective optimization framework. Appl. Therm. Eng. 2024, 244, 122718. [Google Scholar] [CrossRef]
Yue, Y.
Yan, Z.
Ni, P.
Lei, F.
Yao, S. Machine learning-based multi-performance prediction and analysis of Earth-Air Heat Exchanger. Renew. Energy 2024, 227, 120550. [Google Scholar] [CrossRef]
Lapertot, A.
Cuny, M.
Kadoch, B.
Le Métayer, O. Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs. Energy Build. 2021, 235, 110702. [Google Scholar] [CrossRef]
Xiao, J.
Wang, Q.
Wang, X.
Hu, Y.
Cao, Y.
Li, J. An earth-air heat exchanger integrated with a greenhouse in cold-winter and hot-summer regions of northern China: Modeling and ex-perimental analysis. Appl. Therm. Eng. 2023, 232, 120939. [Google Scholar] [CrossRef]
Dewangan, C.
Shukla, A.K.
Salhotra, R.
Dewan, A. Analysis of an earth-to-air heat exchanger for enhanced residential thermal comfort. Environ. Prog. Sustain. Energy 2024, 43, e14346. [Google Scholar] [CrossRef]
Ahsan, T.A.
Rahman, M.S.
Ahamed, M.S. Geothermal energy application for greenhouse microclimate management: A review. Geothermics 2025, 127, 103209. [Google Scholar] [CrossRef]
Kazem, H.A.
Chaichan, M.T.
Al-Waeli, A.H.
Sopian, K.
Alnaser, N.W.
Alnaser, W.E. Energy Enhancement of Building-Integrated Photovoltaic/Thermal Systems: A Systematic Review. Sol. Compass 2024, 12, 100093. [Google Scholar] [CrossRef]
Ma, Q.
Qian, G.
Yu, M.
Li, L.
Wei, X. Performance of windcatchers in improving indoor air quality, thermal comfort, and energy efficiency: A review. Sustainability 2024, 16, 9039. [Google Scholar] [CrossRef]
Hu, Z.
Yang, Q.
Tao, Y.
Shi, L.
Tu, J.
Wang, Y. A review of ventilation and cooling systems for large-scale pig farms. Sustain. Cities Soc. 2023, 89, 104372. [Google Scholar] [CrossRef]
Castro, R.P.
Dinho da Silva, P.
Pires, L.C.C. Advances in Solutions to Improve the Energy Performance of Agricultural Greenhouses: A Comprehensive Review. Appl. Sci. 2024, 14, 6158. [Google Scholar] [CrossRef]
Vakiloroaya, V.
Samali, B.
Fakhar, A.
Pishghadam, K. A review of dif-ferent strategies for HVAC energy saving. Energy Convers. Manag. 2014, 77, 738–754. [Google Scholar] [CrossRef]
Zhong, K.
Meng, Q.
Liu, X. A Ventilation Experimental Study of Thermal Performance of an Urban Underground Pipe Rack. Energy Build. 2021, 241, 110852. [Google Scholar] [CrossRef]
Li, J.
Jimenez-Bescos, C.
Calautit, J.K.
Yao, J. Evaluating the Energy-Saving Potential of Earth-Air Heat Exchanger (EAHX) for Passivhaus Standard Buildings in Different Cli-mates in China. Energy Build. 2023, 288, 113005. [Google Scholar] [CrossRef]
Pikra, G.
Darmanto, P.S.
Astina, I.M. A review of solar chimney-earth air heat exchanger (SCEAHE) system integration for thermal comfort building. J. Build. Eng. 2024, 98, 111484. [Google Scholar] [CrossRef]
Azzi, A.
Tabaa, M.
Chegari, B.
Hachimi, H. Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort. Sustainability 2024, 16, 2154. [Google Scholar] [CrossRef]
Acharya, P.
Sharma, A.
Singh, Y.
Sirohi, R. Passive Cooling Strategies Towards the Sustainability of Livestock Building-An Overview. Indian Vet. J. 2024, 101, 17–26. [Google Scholar] [CrossRef]
Shukla, B.K.
Pandey, A.K.
Singh, A.
Singh, D.
Anas, M. A holistic review on energy-efficient green buildings considering environmental, economical, and technical factors. In Clean Energy
CRC Press: Boca Raton, FL, USA, 2024
pp. 68–85. [Google Scholar]
Bosu, I.
Mahmoud, H.
Ookawara, S.
Hassan, H. Applied single and hybrid solar energy techniques for building energy consumption and thermal comfort: A comprehensive review. Sol. Energy 2023, 259, 188–228. [Google Scholar] [CrossRef]
Chel, A.
Tiwari, G.N. Stand-alone photovoltaic (PV) integrated with earth to air heat exchanger (EAHE) for space heating/cooling of adobe house in New Delhi (India). Energy Convers. Manag. 2010, 51, 393–409. [Google Scholar] [CrossRef]
Ríos-Arriola, J.
Velázquez-Limón, N.
Aguilar-Jiménez, J.A.
Corona, J.A.
Islas, S.
Reyes-López, J.A.
Luna, A. Air Conditioning of an Off-Grid Remote School with an Earth to air Heat Exchanger Coupled Indirectly to a Solar Cooling System. Int. J. Environ. Res. 2024, 18, 112. [Google Scholar] [CrossRef]
Qin, D.
Liu, J.
Zhang, G. A novel solar-geothermal system integrated with earth–to–air heat exchanger and solar air heater with phase change material—Numerical modelling, experimental calibration and parametrical analysis. J. Build. Eng. 2021, 35, 101971. [Google Scholar] [CrossRef]
Congedo, P.M.
Baglivo, C.
Bonuso, S.
D’Agostino, D. Numerical and experimental analysis of the energy performance of an air-source heat pump (ASHP) coupled with a horizontal earth-to-air heat exchanger (EAHX) in different climates. Geothermics 2020, 87, 101845. [Google Scholar] [CrossRef]
Baglivo, C.
Congedo, P.M.
Laforgia, D. Air cooled heat pump coupled with horizontal air-ground heat exchanger (haghe) for zero energy buildings in the mediterranean climate. Energy Procedia 2017, 140, 2–12. [Google Scholar] [CrossRef]
Akhtari, M.R.
Shayegh, I.
Karimi, N. Techno-economic assessment and optimization of a hybrid renewable earth-air heat exchanger coupled with electric boiler, hydrogen, wind and PV configurations. Renew. Energy 2020, 148, 839–851. [Google Scholar] [CrossRef]
Soni, S.K.
Pandey, M.
Bartaria, V.N. Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review. Renew. Sustain. Energy Rev. 2016, 60, 724–738. [Google Scholar] [CrossRef]
Yang, L.H.
Huang, B.H.
Hsu, C.Y.
Chen, S.L. Performance analysis of an earth–air heat exchanger integrated into an agricultural irrigation system for a greenhouse environmental temperature-control system. Energy Build. 2019, 202, 109381. [Google Scholar] [CrossRef]
Soares, N.
Rosa, N.
Monteiro, H.
Costa, J.J. Advances in standalone and hybrid earth-air heat exchanger (EAHE) systems for buildings: A review. Energy Build. 2021, 253, 111532. [Google Scholar] [CrossRef]
Anshu, K.
Kumar, P.
Pradhan, B. Numerical simulation of stand-alone photovoltaic integrated with earth to air heat exchanger for space heating/cooling of a residential building. Renew. Energy 2023, 203, 763–778. [Google Scholar] [CrossRef]
Ali, B.M.
Akkaş, M. The Green Cooling Factor: Eco-Innovative Heating, Ventilation, and Air Conditioning Solutions in Building Design. Appl. Sci. 2023, 14, 195. [Google Scholar] [CrossRef]
D’agostino, D.
Greco, A.
Masselli, C.
Minichiello, F. The employment of an earth-to-air heat exchanger as pre-treating unit of an air conditioning system for energy saving: A comparison among different worldwide climatic zones. Energy Build. 2020, 229, 110517. [Google Scholar] [CrossRef]
Serageldin, A.A.
Abdeen, A.
Ahmed, M.M.
Radwan, A.
Shmroukh, A.N.
Ookawara, S. Solar chimney combined with earth to-air heat exchanger for passive cooling of residential buildings in hot areas. Sol. Energy 2020, 206, 145–162. [Google Scholar] [CrossRef]
Agarwal, S.K.
Batista, R.C. Enhancement of building thermal performance: A comparative analysis of integrated solar chimney and geothermal systems. J. Sustain. Energy 2023, 2, 91–108. [Google Scholar] [CrossRef]
El-Said, E.M.
Sharaf, M.A.
Aljabr, A.
Marzouk, S.A. Enhancing the performance of an earth air heat exchanger with novel pipe configurations. Int. J. Heat Fluid Flow 2024, 110, 109630. [Google Scholar] [CrossRef]
Rosa, N.
Soares, N.
Costa, J.J.
Santos, P.
Gervásio, H. Assessment of an earth-air heat exchanger (EAHE) system for residential buildings in warm-summer Mediterranean climate. Sustain. Energy Technol. Assess. 2020, 38, 100649. [Google Scholar] [CrossRef]
Hasan, N.
Arif, M.
Khader, M.A. Earth Air Tunnel Heat Exchanger for Building Cooling and Heating. In Heat Transfer-Design, Experimentation and Applications
IntechOpen: London, UK, 2021. [Google Scholar]
Mitha, S.B.
Omarsaib, M. Emerging technologies and higher education libraries: A bibliometric analysis of the global literature. Libr. Hi Tech 2024. ahead of print. [Google Scholar] [CrossRef]
Van Eck, N.
Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
Ahmad, S.N.
Prakash, O. A review on modelling, experimental analysis and parametric effects of earth–air heat exchanger. Model. Earth Syst. Environ. 2022, 8, 1535–1551. [Google Scholar] [CrossRef]
Agrawal, K.K.
Misra, R.
Agrawal, G.D.
Bhardwaj, M.
Jamuwa, D.K. Effect of different design aspects of pipe for earth air tunnel heat exchanger system: A state of art. Int. J. Green Energy 2019, 16, 598–614. [Google Scholar] [CrossRef]
Noman, S.
Tirumalachetty, H.
Athikesavan, M.M. A comprehensive review on experimental, numerical and optimization analysis of EAHE and GSHP systems. Environ. Sci. Pollut. Res. 2022, 29, 67559–67603. [Google Scholar] [CrossRef] [PubMed]
Liu, Z.
Sun, P.
Li, S.
Yu, Z.J.
El Mankibi, M.
Roccamena, L.
Zhang, G. Enhancing a vertical earth-to-air heat exchanger system using tubular phase change material. J. Clean. Prod. 2019, 237, 117763. [Google Scholar] [CrossRef]
Ahmed, S.F.
Khan, M.M.K.
Amanullah, M.T.O.
Rasul, M.G.
Hassan, N.M.S. Performance assessment of earth pipe cooling system for low energy buildings in a subtropical climate. Energy Convers. Manag. 2015, 106, 815–825. [Google Scholar] [CrossRef]
Maytorena, V.M.
Moreno, S.
Hinojosa, J.F. Effect of operation modes on the thermal performance of EAHE systems with and without PCM in summer weather conditions. Energy Build. 2021, 250, 111278. [Google Scholar] [CrossRef]
Niu, F.
Yu, Y.
Yu, D.
Li, H. Investigation on soil thermal saturation and recovery of an earth to air heat exchanger under different operation strategies. Appl. Therm. Eng. 2015, 77, 90–100. [Google Scholar] [CrossRef]
Sakhri, N.
Menni, Y.
Ameur, H. Effect of the pipe material and burying depth on the thermal efficiency of earth-to-air heat exchangers. Case Stud. Chem. Environ. Eng. 2020, 2, 100013. [Google Scholar] [CrossRef]
Lekhal, M.C.
Benzaama, M.H.
Kindinis, A.
Mokhtari, A.M.
Belarbi, R. Effect of geo-climatic conditions and pipe material on heating performance of earth-air heat exchangers. Renew. Energy 2021, 163, 22–40. [Google Scholar] [CrossRef]
Xiao, J.
Li, J. Influence of different types of pipes on the heat exchange performance of an earth-air heat exchanger. Case Stud. Therm. Eng. 2024, 55, 104116. [Google Scholar] [CrossRef]
Peretti, C.
Zarrella, A.
De Carli, M.
Zecchin, R. The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A Lit. Rev. Renew. Sustain. Energy Rev. 2013, 28, 107–116. [Google Scholar] [CrossRef]
Pavlenko, A.M.
Usenko, B.O.
Koshlak, H.V. Analysis of thermal peculiarities of alloying with special properties. Metall. Min. Ind. 2014, 2, 15–20. [Google Scholar]
Agrawal, K.K.
Misra, R.
Agrawal, G.D. Improving the thermal performance of ground air heat exchanger system using sand-bentonite (in dry and wet condition) as backfilling material. Renew. Energy 2020, 146, 2008–2023. [Google Scholar] [CrossRef]
Besler, M.
Cepiński, W.
Kęskiewicz, P. Direct-contact air, gravel, ground heat exchanger in air treatment systems for cowshed air conditioning. Energies 2021, 15, 234. [Google Scholar] [CrossRef]
Liu, Z.
Sun, P.
Xie, M.
Zhou, Y.
He, Y.
Zhang, G.
Qin, D. Multivariant optimization and sensitivity analysis of an experimental vertical earth-to-air heat exchanger system integrating phase change material with Taguchi method. Renew. Energy 2021, 173, 401–414. [Google Scholar] [CrossRef]
Zhou, T.
Xiao, Y.
Huang, H.
Lin, J. Numerical study on the cooling performance of a novel passive system: Cylindrical phase change material-assisted earth-air heat exchanger. J. Clean. Prod. 2020, 245, 118907. [Google Scholar] [CrossRef]
Shahsavar, A.
Azimi, N. Performance evaluation and multi-objective optimization of a hybrid earth-air heat exchanger and building-integrated photovoltaic/thermal system with phase change material and exhaust air heat recovery. J. Build. Eng. 2024, 90, 109531. [Google Scholar] [CrossRef]
Myroniuk, K.
Furdas, Y.
Zhelykh, V.
Adamski, M.
Gumen, O.
Savin, V.
Mitoulis, S.A. Passive Ventilation of Residential Buildings Using the Trombe Wall. Buildings 2024, 14, 3154. [Google Scholar] [CrossRef]
Cavazzini, G.
Zanetti, G.
Benato, A. Analysis of a domestic air heat pump integrated with an air-geothermal heat exchanger in real operating conditions: The case study of a single-family building. Energy Build. 2024, 315, 114302. [Google Scholar] [CrossRef]
Baglivo, C.
Bonuso, S.
Congedo, P.M. Performance Analysis of Air Cooled Heat Pump Coupled with Horizontal Air Ground Heat Exchanger in the Mediterranean Climate. Energies 2018, 11, 2704. [Google Scholar] [CrossRef]
Li, H.
Ni, L.
Yao, Y.
Sun, C. Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses. Renew. Energy 2020, 146, 25–37. [Google Scholar] [CrossRef]
Ascione, F.
D’Agostino, D.
Marino, C.
Minichiello, F. Earth-to-air heat exchanger for NZEB in Mediterranean climate. Renew. Energy 2016, 99, 553–563. [Google Scholar] [CrossRef]
Thiers, S.
Peuportier, B. Thermal and environmental assessment of a passive building equipped with an earth-to-air heat exchanger in France. Sol. Energy 2008, 82, 820–831. [Google Scholar] [CrossRef]
Wojtkowiak, J. Experimental flow characteristics of multi-pipe earth-to-air heat exchangers. Found. Civ. Environ. Eng. 2012, 15, 5–18. [Google Scholar]
Bojic, M.
Trifunovic, N.
Papadakis, G.
Kyritsis, S. Numerical simulation, technical and economic evaluation of air-to-earth heat exchanger coupled to a building. Energy 1997, 22, 1151–1158. [Google Scholar] [CrossRef]
Li, H.
Ni, L.
Liu, G.
Zhao, Z.
Yao, Y. Feasibility study on applications of an Earth-air Heat Exchanger (EAHE) for preheating fresh air in severe cold regions. Renew. Energy 2019, 133, 1268–1284. [Google Scholar] [CrossRef]
Lattieff, F.A.
Atiya, M.A.
Lateef, R.A.
Dulaimi, A.
Jweeg, M.J.
Abed, A.M.
Talebizadehsardari, P. Thermal analysis of horizontal earth-air heat exchangers in a subtropical climate: An experimental study. Front. Built Environ. 2022, 8, 981946. [Google Scholar] [CrossRef]
Molina-Rodea, R.
Wong-Loya, J.A.
Pocasangre-Chávez, H.
Reyna-Guillén, J. Experimental evaluation of a “U” type earth-to-air heat exchanger planned for narrow installation space in warm climatic conditions. Energy Built Environ. 2024, 5, 772–786. [Google Scholar] [CrossRef]
Ahmed, S.F.
Liu, G.
Mofijur, M.
Azad, A.K.
Hazrat, M.A.
Chu, Y.M. Physical and hybrid modelling techniques for earth-air heat exchangers in reducing building energy consumption: Performance, applications, progress, and challenges. Sol. Energy 2021, 216, 274–294. [Google Scholar] [CrossRef]
Tasdelen, F.
Dagtekin, I. A numerical study on heating performance of horizontal and vertical earth-air heat exchangers with equal pipe lengths. Therm. Sci. 2022, 26 Pt A, 2929–2939. [Google Scholar] [CrossRef]
Salhein, K.
Kobus, C.J.
Zohdy, M.
Annekaa, A.M.
Alhawsawi, E.Y.
Salheen, S.A. Heat Transfer Performance Factors in a Vertical Ground Heat Exchanger for a Geothermal Heat Pump System. Energies 2024, 17, 5003. [Google Scholar] [CrossRef]
Liu, Z.
Yu, Z.J.
Yang, T.
Li, S.
El Mankibi, M.
Roccamena, L.
Zhang, G. Experimental investigation of a vertical earth-to-air heat exchanger system. Energy Convers. Manag. 2019, 183, 241–251. [Google Scholar] [CrossRef]
Koshlak, H.
Pavlenko, A. Heat and Mass Transfer During Phase Transitions in Liquid Mixtures. Rocz. Ochr. Srodowiska 2019, 21, 234–249. [Google Scholar]
Basok, B.
Davydenko, B.
Koshlak, H.
Novikov, V. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Materials 2022, 15, 4843. [Google Scholar] [CrossRef]
Go, G.H.
Lee, S.R.
Nikhil, N.V.
Yoon, S. A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration. Energy 2015, 83, 766–777. [Google Scholar] [CrossRef]
Rodríguez-Vázquez, M.
Xamán, J.
Chávez, Y.
Hernández-Pérez, I.
Simá, E. Thermal potential of a geothermal earth-to-air heat exchanger in six climatic conditions of México. Mech. Ind. 2020, 21, 308. [Google Scholar] [CrossRef]
Bisoniya, T.S. Design of earth–air heat exchanger system. Geotherm. Energy 2015, 3, 18. [Google Scholar] [CrossRef]
Basok, B.
Pavlenko, A.
Nedbailo, A.
Bozhko, I.
Novitska, M.
Koshlak, H.
Tkachenko, M. Analysis of the Energy Efficiency of the Earth-To-Air Heat Exchanger. Rocz. Ochr. Sr. 2022, 24, 202–213. [Google Scholar] [CrossRef]
Greco, A.
Gundabattini, E.
Solomon, D.G.
Singh Rassiah, R.
Masselli, C. A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning. Energies 2022, 15, 5519. [Google Scholar] [CrossRef]
Peñaloza Peña, S.A.
Jaramillo Ibarra, J.E. Potential applicability of earth to air heat exchanger for cooling in a colombian tropical weather. Buildings 2021, 11, 219. [Google Scholar] [CrossRef]
Malek, K.
Malek, K.
Khanmohammadi, F. Response of soil thermal conductivity to various soil properties. Int. Commun. Heat Mass Transf. 2021, 127, 105516. [Google Scholar] [CrossRef]
Cuny, M.
Lin, J.
Siroux, M.
Magnenet, V.
Fond, C. Influence of coating soil types on the energy of earth-air heat exchanger. Energy Build. 2018, 158, 1000–1012. [Google Scholar] [CrossRef]
Di Sipio, E.
Bertermann, D. Factors influencing the thermal efficiency of horizontal ground heat exchangers. Energies 2017, 10, 1897. [Google Scholar] [CrossRef]
Kumar Singh, R.
Sharma, R.V. Mathematical Investigation of Soil Temperature Variation for Geothermal Applications. Int. J. Eng. 2017, 30, 1609–1614. [Google Scholar]
Faridi, H.
Arabhosseini, A.
Zarei, G.
Okos, M. Degree-Day Index for Estimating the Thermal Requirements of a Greenhouse Equipped with an Air-Earth Heat Exchanger System. J. Agric. Mach. 2021, 11, 83–95. [Google Scholar]
Ascione, F.
Bellia, L.
Minichiello, F. Earth-to-air heat exchangers for Italian climates. Renew. Energy 2011, 36, 2177–2188. [Google Scholar] [CrossRef]
Vidhi, R. A review of underground soil and night sky as passive heat sink: Design configurations and models. Energies 2018, 11, 2941. [Google Scholar] [CrossRef]
Singh, R.K.
Sharma, R.V. Numerical analysis for ground temperature variation. Geotherm. Energy 2017, 5, 22. [Google Scholar] [CrossRef]
Kaushal, M. Geothermal cooling/heating using ground heat exchanger for various experimental and analytical studies: Comprehensive review. Energy Build. 2017, 139, 634–652. [Google Scholar] [CrossRef]
Sanusi, A.N.
Shao, L.
Ibrahim, N. Passive ground cooling system for low energy buildings in Malaysia (hot and humid climates). Renew. Energy 2013, 49, 193–196. [Google Scholar] [CrossRef]
Babar, H.
Ali, H.M.
Haseeb, M.
Abubaker, M.
Muhammad, A.
Irfan, M. Experimental investigation of the ground coupled heat exchanger system under the climatic conditions of Sahiwal, Pakistan. In Proceedings of the World Congress on Engineering, London, UK, 4–6 July 2018
pp. 4–6. [Google Scholar]
Khan, T.A.
Shabbir, K.
Khan, M.M.
Siddiqui, F.A.
Taseer, M.Y.R.
Imtiaz, S. Earth-tube system to control indoor thermal environment in residential buildings. Tech. J. 2020, 25, 33–40. [Google Scholar]
Alves, A.B.M.
Schmid, A.L. Cooling and heating potential of underground soil according to depth and soil surface treatment in the Brazilian climatic regions. Energy Build. 2015, 90, 41–50. [Google Scholar] [CrossRef]
Bhandari, R. Sustainable cooling solutions for building environments: A comprehensive study of earth-air cooling systems. Adv. Mech. Eng. 2024, 16, 16878132241272209. [Google Scholar] [CrossRef]
Pollack, H.N.
Smerdon, J.E.
van Keken, P.E. Variable seasonal coupling between air and ground temperatures: A simple representation in terms of subsurface thermal diffusivity. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
Smerdon, J.E.
Pollack, H.N.
Cermak, V.
Enz, J.W.
Kresl, M.
Safanda, J.
Wehmiller, J.F. Air-ground temperature coupling and subsurface propagation of annual temperature signals. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
Kane, D.L.
Hinkel, K.M.
Goering, D.J.
Hinzman, L.D.
Outcalt, S.I. Non-conductive heat transfer associated with frozen soils. Glob. Planet. Change 2001, 29, 275–292. [Google Scholar] [CrossRef]
Zajch, A.
Gough, W.A. Seasonal sensitivity to atmospheric and ground surface temperature changes of an open earth-air heat exchanger in Canadian climates. Geothermics 2021, 89, 101914. [Google Scholar] [CrossRef]
Zajch, A.
Gough, W.
Chiesa, G. Earth–Air Heat Exchanger Potential Under Future Climate Change Scenarios in Nine North American Cities. In Sustainability in Energy and Buildings: Proceedings of SEB 2019
Springer: Singapore, 2020
pp. 109–119. [Google Scholar]
Singh, B.
Kumar, R.
Asati, A.K. Influence of parameters on performance of earth air heat exchanger in hot-dry climate. J. Mech. Sci. Technol. 2018, 32, 5457–5463. [Google Scholar] [CrossRef]
Liu, Z.
Yu, Z.J.
Yang, T.
Roccamena, L.
Sun, P.
Li, S.
El Mankibi, M. Numerical modeling and parametric study of a vertical earth-to-air heat exchanger system. Energy 2019, 172, 220–231. [Google Scholar] [CrossRef]
Hasan, M.I.
Noori, S.W.
Shkarah, A.J. Parametric study on the performance of the earth-to-air heat exchanger for cooling and heating applications. Heat Transf. —Asian Res. 2019, 48, 1805–1829. [Google Scholar] [CrossRef]
Ali, S.
Muhammad, N.
Amin, A.
Sohaib, M.
Basit, A.
Ahmad, T. Parametric optimization of earth to air heat exchanger using response surface method. Sustainability 2019, 11, 3186. [Google Scholar] [CrossRef]
Agrawal, K.K.
Misra, R.
Agrawal, G.D. To study the effect of different parameters on the thermal performance of ground-air heat exchanger system: In situ measurement. Renew. Energy 2020, 146, 2070–2083. [Google Scholar] [CrossRef]
Mahach, H.
Benhamou, B. Extensive parametric study of cooling performance of an earth-to-air heat exchanger in hot semi-arid climate. J. Therm. Sci. Eng. Appl. 2021, 13, 031006. [Google Scholar] [CrossRef]
Zhang, Z.
Sun, J.
Zhang, Z.
Jia, X.
Liu, Y. Numerical Research and Parametric Study on the Thermal Performance of a Vertical Earth-to-Air Heat Exchanger System. Math. Probl. Eng. 2021, 2021, 5557280. [Google Scholar] [CrossRef]
Yu, W.
Chen, X.
Ma, Q.
Gao, W.
Wei, X. Modeling and assessing earth-air heat exchanger using the parametric performance design method. Energy Sources Part A Recovery Util. Environ. Eff. 2022, 44, 7873–7894. [Google Scholar] [CrossRef]
Sghiouri, H.
Wakil, M.
Charai, M.
Mezrhab, A. Development of a Multi-Objective optimization framework for Earth-to-Air heat Exchanger Systems: Enhancing thermal performance and economic viability in Moroccan climates. Energy Convers. Manag. 2024, 321, 119024. [Google Scholar] [CrossRef]
de Andrade, I.R.
dos Santos, E.D.
Zhang, H.
Rocha, L.A.O.
Razera, A.L.
Isoldi, L.A. Multi-Objective Numerical Analysis of Horizontal Rectilinear Earth–Air Heat Exchangers with Elliptical Cross Section Using Constructal Design and TOPSIS. Fluids 2024, 9, 257. [Google Scholar] [CrossRef]
Cuny, M.
Lin, J.
Siroux, M.
Fond, C. Influence of an improved surrounding soil on the energy performance and the design length of earth-air heat exchanger. Appl. Therm. Eng. 2019, 162, 114320. [Google Scholar] [CrossRef]
Jahanbin, A. Thermal performance of the vertical ground heat exchanger with a novel elliptical single U-tube. Geothermics 2020, 86, 101804. [Google Scholar] [CrossRef]
Benhammou, M.
Sahli, Y.
Moungar, H. Investigation of the impact of pipe geometric form on earth-to-air heat exchanger performance using Complex Finite Fourier Transform analysis. Part I: Operation in cooling mode. Int. J. Therm. Sci. 2022, 177, 107484. [Google Scholar] [CrossRef]
Darius, D.
Misaran, M.S.
Rahman, M.M.
Ismail, M.A.
Amaludin, A. Working parameters affecting earth-air heat exchanger (EAHE) system performance for passive cooling: A review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 217, 012021. [Google Scholar] [CrossRef]
Benrachi, N.
Ouzzane, M.
Smaili, A.
Lamarche, L.
Badache, M.
Maref, W. Numerical parametric study of a new earth-air heat exchanger configuration designed for hot and arid climates. Int. J. Green Energy 2020, 17, 115–126. [Google Scholar] [CrossRef]
Mihalakakou, G.
Lewis, J.O.
Santamouris, M. On the heating potential of buried pipes techniques—Application in Ireland. Energy Build. 1996, 24, 19–25. [Google Scholar] [CrossRef]
Amanowicz, Ł.
Wojtkowiak, J. Comparison of single-and multipipe earth-to-air heat exchangers in terms of energy gains and electricity consumption: A case study for the temperate climate of central europe. Energies 2021, 14, 8217. [Google Scholar] [CrossRef]
Mihalakakou, G.
Souliotis, M.
Papadaki, M.
Halkos, G.
Paravantis, J.
Makridis, S.
Papaefthimiou, S. Applications of earth-to-air heat exchangers: A holistic review. Renew. Sustain. Energy Rev. 2022, 155, 111921. [Google Scholar] [CrossRef]
Qi, D.
Li, S.
Zhao, C.
Xie, W.
Li, A. Structural optimization of multi-pipe earth to air heat exchanger in greenhouse. Geothermics 2022, 98, 102288. [Google Scholar] [CrossRef]
Amanowicz, Ł.
Wojtkowiak, J. Thermal performance of multi-pipe earth-to-air heat exchangers considering the non-uniform distribution of air between parallel pipes. Geothermics 2020, 88, 101896. [Google Scholar] [CrossRef]
Minaei, A.
Rabani, R. Development of a transient analytical method for multi-pipe earth-to-air heat exchangers with parallel configuration. J. Build. Eng. 2023, 73, 106781. [Google Scholar] [CrossRef]
Qi, D.
Li, A.
Li, S.
Zhao, C. Comparative analysis of earth to air heat exchanger configurations based on uniformity and thermal performance. Appl. Therm. Eng. 2021, 183, 116152. [Google Scholar] [CrossRef]
Brum, R.S.
Ramalho, J.V.
Rodrigues, M.K.
Rocha, L.A.
Isoldi, L.A.
Dos Santos, E.D. Design evaluation of Earth-Air Heat Exchangers with multiple ducts. Renew. Energy 2019, 135, 1371–1385. [Google Scholar] [CrossRef]
Amanowicz, Ł.
Wojtkowiak, J. Approximated flow characteristics of multi-pipe earth-to-air heat exchangers for thermal analysis under variable airflow conditions. Renew. Energy 2020, 158, 585–597. [Google Scholar] [CrossRef]
Amanowicz, Ł. Influence of geometrical parameters on the flow characteristics of multi-pipe earth-to-air heat exchangers–experimental and CFD investigations. Appl. Energy 2018, 226, 849–861. [Google Scholar] [CrossRef]
Badescu, V.
Isvoranu, D. Pneumatic and thermal design procedure and analysis of earth-to-air heat exchangers of registry type. Appl. Energy 2011, 88, 1266–1280. [Google Scholar] [CrossRef]
Sofyan, S.E.
Riayatsyah, T.M.I.
Hu, E.
Tamlicha, A.
Pahlefi, T.M.R.
Aditiya, H.B. Computational fluid dynamic simulation of earth air heat exchanger: A thermal performance comparison between series and parallel arrangements. Results Eng. 2024, 24, 102932. [Google Scholar] [CrossRef]
Muehleisen, R.T. Simple design tools for earth-air heat exchangers. Proc. SimBuild 2012, 5, 723–730. [Google Scholar]
Mehdid, C.E.
Benchabane, A.
Rouag, A.
Moummi, N.
Melhegueg, M.A.
Moummi, A.
Brima, A. Thermal design of Earth-to-air heat exchanger. Part II a new transient semi-analytical model and experimental validation for estimating air temperature. J. Clean. Prod. 2018, 198, 1536–1544. [Google Scholar] [CrossRef]
Ali, M.H.
Kurjak, Z.
Beke, J. Investigation of earth air heat exchangers functioning in arid locations using Matlab/Simulink. Renew. Energy 2023, 209, 632–643. [Google Scholar] [CrossRef]
Guo, X.
Wei, H.
He, X.
Du, J.
Yang, D. Experimental evaluation of an earth–to–air heat exchanger and air source heat pump hybrid indoor air conditioning system. Energy Build. 2022, 256, 111752. [Google Scholar] [CrossRef]
Do, S.L.
Baltazar, J.C.
Haberl, J. Potential cooling savings from a ground-coupled return-air duct system for residential buildings in hot and humid climates. Energy Build. 2015, 103, 206–215. [Google Scholar] [CrossRef]
Mahmoud, M.
Abdelkareem, M.A.
Olabi, A.G. Earth air heat exchangers. In Renewable Energy-Volume 2: Wave, Geothermal, and Bioenergy
Academic Press: Cambridge, MA, USA, 2024
pp. 163–179. [Google Scholar]
Yan, T.
Xu, X. Utilization of ground heat exchangers: A review. Curr. Sustain./Renew. Energy Rep. 2018, 5, 189–198. [Google Scholar] [CrossRef]
Qi, X.
Yang, D.
Guo, X.
Chen, F.
An, F.
Wei, H. Theoretical modelling and experimental evaluation of thermal performance of a combined earth-to-air heat exchanger and return air hybrid system. Renew. Energy 2024, 236, 121418. [Google Scholar] [CrossRef]
Kundu, A. Application of Geothermal Energy-Based Earth-Air Heat Exchanger in Sustainable Buildings. In Heat Transfer Enhancement Techniques: Thermal Performance, Optimization and Applications
John Wiley & Sons: Hoboken, NJ, USA, 2025
pp. 221–232. [Google Scholar]
Dokmak, H.
Faraj, K.
Faraj, J.
Castelain, C.
Khaled, M. Geothermal systems classification, coupling, and hybridization: A recent comprehensive review. Energy Built Environ. 2024, in press. [CrossRef]
Yadav, S.
Panda, S.K.
Tiwari, G.N.
Al-Helal, I.M.
Hachem-Vermette, C. Periodic theory of greenhouse integrated semi-transparent photovoltaic thermal (GiSPVT) system integrated with earth air heat exchanger (EAHE). Renew. Energy 2022, 184, 45–55. [Google Scholar] [CrossRef]
Hraibet, M.K.
Ismaeel, A.A.
Mohammed, M.J. Performances evaluation of different photovoltaic-thermal solar collector designs for electrical and hot air generation technology. AIP Conf. Proc. 2024, 3002, 060005. [Google Scholar]
Zhao, J.
Huang, B.
Li, Y.
Zhao, Y. Comprehensive review on climatic feasibility and economic benefits of Earth-to-Air Heat Exchanger (EAHE) systems. Sustain. Energy Technol. Assess. 2024, 68, 103862. [Google Scholar] [CrossRef]
Gorjian, S.
Singh, R.
Shukla, A.
Mazhar, A.R. On-farm applications of solar PV systems. In Photovoltaic Solar Energy Conversion
Academic Press: Cambridge, MA, USA, 2020
pp. 147–190. [Google Scholar]
Aljashaami, B.A.
Ali, B.M.
Salih, S.A.
Alwan, N.T.
Majeed, M.H.
Ali, O.M.
Shcheklein, S.E. Recent improvements to heating, ventilation, and cooling technologies for buildings based on renewable energy to achieve zero-energy buildings: A systematic review. Results Eng. 2024, 23, 102769. [Google Scholar] [CrossRef]
Hepbasli, A. Low exergy modelling and performance analysis of greenhouses coupled to closed earth-to-air heat exchangers (EAHEs). Energy Build. 2013, 64, 224–230. [Google Scholar] [CrossRef]
Shaaban, A.
Mosa, M.
El Samahy, A.
Abed, K. Enhancing the Performance of Photovoltaic Panels by Cooling: A Review. Int. Rev. Autom. Control 2023, 16, 26–43. [Google Scholar] [CrossRef]
Dhaidan, N.S.
Al-Shohani, W.A.
Abbas, H.H.
Rashid, F.L.
Ameen, A.
Al-Mousawi, F.N.
Homod, R.Z. Enhancing the thermal performance of an agricultural solar greenhouse by geothermal energy using an earth-air heat exchanger system: A review. Geothermics 2024, 123, 103115. [Google Scholar] [CrossRef]
Jakhar, S.
Soni, M.S.
Boehm, R.F. Thermal modeling of a rooftop photovoltaic/thermal system with earth air heat exchanger for combined power and space heating. J. Sol. Energy Eng. 2018, 140, 031011. [Google Scholar] [CrossRef]
Lopez-Pascual, D.
Valiente-Blanco, I.
Manzano-Narro, O.
Fernandez-Munoz, M.
Diez-Jimenez, E. Experimental characterization of a geothermal cooling system for enhancement of the efficiency of solar photovoltaic panels. Energy Rep. 2022, 8, 756–763. [Google Scholar] [CrossRef]
Tiwari, G.N.
Singh, S.
Singh, Y.
Tiwari, A.
Panda, S.K. Enhancement of daily and monthly electrical power of off-grid greenhouse integrated semi-transparent photo-voltaic thermal (GiSPVT) system by integrating earth air heat exchanger (EAHE). E-Prime-Adv. Electr. Eng. Electron. Energy 2022, 2, 100074. [Google Scholar] [CrossRef]
Salem, H.H.
Hashem, A.L. Integration of Earth-air heat exchanger in buildings review for theoretical researches. AIP Conf. Proc. 2023, 2787, 030009. [Google Scholar]
Yildiz, A.
Ozgener, O.
Ozgener, L. Exergetic performance assessment of solar photovoltaic cell (PV) assisted earth to air heat exchanger (EAHE) system for solar greenhouse cooling. Energy Build. 2011, 43, 3154–3160. [Google Scholar] [CrossRef]
Alkaragoly, M.
Maerefat, M.
Targhi, M.Z.
Abdljalel, A. An innovative hybrid system consists of a photovoltaic solar chimney and an earth-air heat exchanger for thermal comfort in buildings. Case Stud. Therm. Eng. 2022, 40, 102546. [Google Scholar] [CrossRef]
Li, Y.
Chu, S.
Zhao, J.
Li, W.
Tan, B.
Lu, J. A numerical study on the performance of a hybrid ventilation and power generation system. Appl. Therm. Eng. 2024, 238, 122228. [Google Scholar] [CrossRef]
Yang, L.H.
Hu, J.W.
Chiang, Y.C.
Chen, S.L. Performance analysis of building-integrated earth-air heat exchanger retrofitted with a supplementary water system for cooling-dominated climate in Taiwan. Energy Build. 2021, 242, 110949. [Google Scholar] [CrossRef]
Ahmadi, S.
Irandoost Shahrestani, M.
Sayadian, S.
Maerefat, M.
Haghighi Poshtiri, A. Performance analysis of an integrated cooling system consisted of earth-to-air heat exchanger (EAHE) and water spray channel. J. Therm. Anal. Calorim. 2021, 143, 473–483. [Google Scholar] [CrossRef]
Radchenko, M.
Yang, Z.
Pavlenko, A.
Radchenko, A.
Radchenko, R.
Koshlak, H.
Bao, G. Increasing the efficiency of turbine inlet air cooling in climatic conditions of China through rational designing—Part 1: A case study for subtropical climate: General approaches and criteria. Energies 2023, 16, 6105. [Google Scholar] [CrossRef]
Liu, T.
Pang, H.
He, S.
Zhao, B.
Zhang, Z.
Wang, J.
Gao, M. Evaporative Cooling Applied in Thermal Power Plants: A Review of the State-of-the-Art and Typical Case Studies. Fluid Dyn. Mater. Process. 2023, 19, 2229–2266. [Google Scholar] [CrossRef]
Barakat, S.
Ramzy, A.
Hamed, A.M.
El-Emam, S.H. Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System. Energy 2019, 189, 116133. [Google Scholar] [CrossRef]
de la Rocha Camba, E.
Petrakopoulou, F. Earth-cooling air tunnels for thermal power plants: Initial design by CFD modelling. Energies 2020, 13, 797. [Google Scholar] [CrossRef]
Shahsavar, A.
Arıcı, M. Multi-objective energy and exergy optimization of hybrid building-integrated heat pipe photovoltaic/thermal and earth air heat exchanger system using soft computing technique. Eng. Anal. Bound. Elem. 2023, 148, 293–304. [Google Scholar] [CrossRef]
Sakhrı, N.
Mennı, Y.
Ameur, H.
Chamkha, A.J. Experimental study of a stand-alone earth to air heat exchanger for heating and cooling in arid regions. J. Therm. Eng. 2021, 7, 1206–1215. [Google Scholar] [CrossRef]