Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1286
Publikacje
Pomoc (F2)
[140340] Artykuł:

Plasma Photocatalysis: A Novel Approach for Enhanced Air Disinfection in Centralised Ventilation Systems

Czasopismo: Materials   Tom: 18, Zeszyt: 8, Strony: 1870
ISSN:  1996-1944
Opublikowano: Kwiecień 2025
Liczba arkuszy wydawniczych:  2.00
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Hanna Koshlak orcid logo WiŚGiEKatedra Inżynierii SanitarnejTakzaliczony do "N"Inżynieria środowiska, górnictwo i energetyka60140.00140.00  
Leonid Lobanov Niespoza "N" jednostkiInżynieria materiałowa10.00.00  
Borys Basok Niespoza "N" jednostkiInżynieria materiałowa10.00.00  
Tetyana Hrabova Niespoza "N" jednostkiBiotechnologia10.00.00  
Pavlo Goncharov Niespoza "N" jednostkiInżynieria chemiczna10.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

plasma photocatalysis  air disinfection  HVAC systems  indoor air quality  TiO2 photocatalysis  adsorbent-catalytic granule  energy efficiency  air purification  heat recovery 



Abstract:

The COVID-19 pandemic highlighted the urgent need for sustainable and scalable air disinfection technologies in HVAC systems, addressing the limitations of energy-intensive and chemically intensive conventional methods. This study developed and evaluated a pilot experimental installation integrating plasma chemistry and photocatalysis for airborne pathogen and pollutant mitigation. The installation, designed with a modular architecture to simulate real-world HVAC dynamics, employed a bipolar plasma ioniser, a TiO2 photocatalytic module, and an adsorption-catalytic module for ozone abatement. Characterization techniques, including SEM and BET analysis, were used to evaluate the morphology and surface properties of the catalytic materials. Field tests in a production room demonstrated a 60% reduction in airborne microflora in three days, along with effective decomposition of ozone. The research also determined the optimal electrode geometry and interelectrode distance for stable corona discharge, which is essential for efficient plasma generation. Energy-efficient design considerations, which incorporate heat recovery and heat pump integration, achieved a 7–8-fold reduction in air heating energy consumption. These results demonstrate the potential of integrated plasma photocatalysis as a sustainable and scalable approach to enhance indoor air quality in centralised HVAC systems, contributing to both public health and energy efficiency.



B   I   B   L   I   O   G   R   A   F   I   A
Fermoso, J.
Sánchez, B.
Suarez, S. 5—Air purification applications using photocatalysis. In Micro and Nano Technologies
Elsevier: Amsterdam, The Netherlands, 2020
pp. 99–128. [Google Scholar] [CrossRef]
He, F.
Jeon, W.
Choi, W. Photocatalytic air purification mimicking the self-cleaning process of the atmosphere. Nat. Commun. 2021, 12, 2528. [Google Scholar] [CrossRef] [PubMed]
Lekshmi, M.V.
Nagendra, S.M.S.
Maiya, M.P. Heterogeneous Photocatalysis for Indoor Air Purification: Recent Advances in Technology from Material to Reactor Modeling. In Indoor Environmental Quality
Sharma, A., Goyal, R., Mittal, R., Eds.
Lecture Notes in Civil Engineering
Springer: Singapore, 2020
Volume 60. [Google Scholar] [CrossRef]
Maggos, T.
Binas, V.
Panagopoulos, P.
Skliri, E.
Theodorou, K.
Nikolakopoulos, A.
Kiriakidis, G.
Giama, E.
Chantzis, G.
Papadopoulos, A. Improvement of Buildings’ Air Quality and Energy Consumption Using Air Purifying Paints. Appl. Sci. 2024, 14, 5997. [Google Scholar] [CrossRef]
Somsen, G.A.
van Rijn, C.J.M.
Kooij, S.
Bem, R.A.
Bonn, D. Measurement of small droplet aerosol concentrations in public spaces using handheld particle counters. Phys. Fluids 2020, 32, 121707. [Google Scholar] [CrossRef]
Brief, W.S. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions
World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
Van Doremalen, N.
Bushmaker, T.
Morris, D.H.
Holbrook, M.G.
Gamble, A.
Williamson, B.N.
Tamin, A.
Harcourt, J.L.
Thornburg, N.J.
Gerber, S.I.
et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
Sodiq, A.
Khan, M.A.
Naas, M.
Amhamed, A. Addressing COVID-19 contagion through the HVAC systems by reviewing indoor airborne nature of infectious microbes: Will an innovative air recirculation concept provide a practical solution. Environ. Res. 2021, 199, 111329. [Google Scholar] [CrossRef] [PubMed]
Ding, J.
Yu, C.W.
Cao, S.-J. HVAC systems for environmental control to minimize the COVID-19 infection. Indoor Built Environ. 2020, 29, 1195–1201. [Google Scholar] [CrossRef]
Vranay, F.
Pirsel, L.
Kacik, R.
Vranayova, Z. Adaptation of HVAC Systems to Reduce the Spread of COVID-19 in Buildings. Sustainability 2020, 12, 9992. [Google Scholar] [CrossRef]
Bayarri, B.
Cruz-Alcalde, A.
López-Vinent, N.
Micó, M.M.
Sans, C. Can ozone inactivate SARS-CoV-2? A review of mechanisms and performance on viruses. J. Hazard. Mater. 2021, 415, 125658. [Google Scholar] [CrossRef]
Bishai, M. A comprehensive study of COVID-19 in wastewater: Occurrence, surveillance, and viewpoints on its remedy. In Environmental and Health Management of Novel Coronavirus Disease (COVID-19)
Dehghani, M.H., Karri, R.R., Roy, S., Eds.
Academic Press: Cambridge, MA, USA, 2021
pp. 115–144. [Google Scholar] [CrossRef]
Elsaid, A.M.
Ahmed, M.S. Indoor Air Quality Strategies for Air-Conditioning and Ventilation Systems with the Spread of the Global Coronavirus (COVID-19) Epidemic: Improvements and Recommendations. Environ. Res. 2021, 199, 111314. [Google Scholar] [CrossRef]
Nair, A.N.
Anand, P.
George, A.
Mondal, N. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environ. Res. 2022, 213, 113579. [Google Scholar] [CrossRef]
Giri, A.
García-Sánchez, C.
Bluyssen, P.M. Quantifying airborne transmission in ventilated settings: A review. Build. Environ. 2024, 266, 112049. [Google Scholar] [CrossRef]
Khankari, K. Role of HVAC System Configuration on Probable Flow Path of Airborne Pathogens in a Patient Room. In Proceedings of the ASHRAE Transactions, Denver, CO, USA, 22–26 June 2013
p. 119. [Google Scholar]
Obitková, D.
Mráz, M.
Pavlík, E. Virus removal by high-efficiency air (HEPA) filters and filtration capacity enhancement by nanotextiles: A pilot study. Folia Microbiol. 2024, 69, 459–464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Liu, L.
Shen, Z.
Wang, C. Recent advances and new insights on the construction of photocatalytic systems for environmental disinfection. J. Environ. Manag. 2024, 353, 120235. [Google Scholar] [CrossRef] [PubMed]
Shamim, J.A.
Hsu, W.-L.
Daiguji, H. Review of component designs for post-COVID-19 HVAC systems: Possibilities and challenges. Heliyon 2022, 8, e09001. [Google Scholar] [CrossRef]
Air Purification and Disinfection System. Technology of Airlife Swiss AG. Available online: https://airlife.swiss/it/technology (accessed on 28 June 2022).
Schmidt, M.
Jõgi, I.
Hołub, M.
Brandenburg, R. Non-thermal plasma based decomposition of volatile organic compounds in industrial exhaust gases. Int. J. Environ. Sci. Technol. 2015, 12, 3745–3754. [Google Scholar] [CrossRef]
Escobedo, S.
de Lasa, H. Photocatalysis for Air Treatment Processes: Current Technologies and Future Applications for the Removal of Organic Pollutants and Viruses. Catalysts 2020, 10, 966. [Google Scholar] [CrossRef]
Okrasa, M.
Hitz, J.
Nowak, A.
Brochocka, A.
Thelen, C.
Walczak, Z. Adsorption Performance of Activated-Carbon-LoadedNonwoven Filters Used in FilteringFacepiece Respirators. Int. J. Environ. Res. Public Health 2019, 16, 1973. [Google Scholar] [CrossRef]
Li, P.
Li, J.
Feng, X.
Li, J.
Hao, Y.
Zhang, J.
Wang, H.
Yin, A.
Zhou, J.
Ma, X.
et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177. [Google Scholar] [CrossRef]
Kim, Y.-J.
Huo, Z.-Y.
Wang, X.
Dai, H.
Lee, D.-M.
Suh, I.-Y.
Hwang, J.-H.
Chung, Y.
Lee, H.Y.
Du, Y.
et al. Walking-induced electrostatic charges enable in situ electroporated disinfection in portable water bottles. Nat. Water 2024, 2, 360–369. [Google Scholar] [CrossRef]
Chalaev, D.
Hrabova, T.
Sydorenko, V.
Honcharov, P.
Bazieiev, R. Increasing the efficiency of ozone technology in air purification HVAC systems. Acta Period. Technol. 2023, 54, 105–114. [Google Scholar] [CrossRef]
Pertegal, V.
Riquelme, E.
Lozano-Serra, J.
Cañizares, P.
Rodrigo, M.A.
Sáez, C.
Lacasa, E. Cleaning technologies integrated in duct flows for the inactivation of pathogenic microorganisms in indoor environments: A critical review of recent innovations and future challenges. J. Environ. Manag. 2023, 345, 118798. [Google Scholar] [CrossRef]
Ahmed, W.
Angel, N.
Edson, J.
Bibby, K.
Bivins, A.
O’Brien, J.W.
Choi, P.M.
Kitajima, M.
Simpson, S.L.
Li, J.
et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef]
New WHO Global Air Quality Guidelines. Guidelines of the WHO European Center for Environment and Health. Available online: https://www.who.int/news/item/22-09-2021-new-who-global-air-quality-guidelines-aim-to-save-millions-of-lives-from-air-pollution (accessed on 15 January 2025).
Wang, A.
Wu, Y.
Shen, X.
Zhang, Q.
Jian, H.
Han, C. Efficient ozone decomposition by amorphous Mn–Ni bimetallic catalysts under an entire humidity environment. J. Environ. Chem. Eng. 2024, 12, 113848. [Google Scholar] [CrossRef]
Lu, J.-L.
Wang, S.
Zhao, K.
Wang, T.
NI, C.-J.
Wang, M.-Z.
Wang, S.-D. Study on catalytic performance of supported transition metal oxide catalyst for ozone decomposition. J. Fuel Chem. Technol. 2021, 49, 1014–1022. [Google Scholar] [CrossRef]
Li, H.
Li, Y.
Liu, M.
Wang, P.
Zhao, B.
Sun, T. Effect of different structure of Cu/Mn catalysts on ozone decomposition ability. Res. Chem. Intermed. 2023, 49, 4461–4479. [Google Scholar] [CrossRef]
Qing, W.
Liu, F.
Yao, H.
Sun, S.
Chen, C.
Zhang, W. Functional catalytic membrane development: A review of catalyst coating techniques.Advances in Colloid and Interface Science. Adv Colloid Interface Sci. 2020, 282, 102207. [Google Scholar] [CrossRef]
Cohen, J.D.
Sierra-Gallego, G.
Tobón, J.I. Evaluation of Photocatalytic Properties of Portland Cement Blended with Titanium Oxynitride (TiO2−xNy) Nanoparticles. Coatings 2015, 5, 465–476. [Google Scholar] [CrossRef]
Alonso-Tellez, A.
Massona, R.
Robert, D.
Keller, N.
Keller, V. Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. J. Photochem. Photobiol. A Chem. 2012, 250, 58–65. [Google Scholar] [CrossRef]
Basok, B.
Davydenko, B.
Pavlenko, A.M. Numerical Network Modeling of Heat and Moisture Transfer through Capillary-Porous Building Materials. Materials 2021, 14, 1819. [Google Scholar] [CrossRef]
Koshlak, H. Synthesis of Zeolites from Coal Fly Ash Using Alkaline Fusion and Its Applications in Removing Heavy Metals. Materials 2023, 16, 4837. [Google Scholar] [CrossRef]
Basok, B.
Davydenko, B.
Koshlak, H.
Novikov, V. Free Convection and Heat Transfer in Porous Ground Massif during Ground Heat Exchanger Operation. Materials 2022, 15, 4843. [Google Scholar] [CrossRef] [PubMed]
Rafati, M.
Fauchoux, N.M.
Besant, R.W.
Simonson, C.J. A review of frosting in air-to-air energy exchangers. Renew. Sustain. Energy Rev. 2014, 30, 538–554. [Google Scholar] [CrossRef]
Kanaś, P.
Jedlikowski, A.
Karpuk, M.
Anisimov, S.
Vager, B. Heat transfer in the regenerative heat exchanger Author links open overlay panel. Appl. Therm. Eng. 2022, 215, 118922. [Google Scholar] [CrossRef]
ISO 14698
Cleanrooms and Associated Controlled Environments—Biocontamination Control. Part 1: General Principles and Methods
Part 2: Evaluation and Interpretation of Biocontamination. International Organization for Standardization: Geneva, Switzerland, 2003.
Hodnett, B. Photocatalytic purification and treatment of water and air: By D.F. Ollis and H. Al-Ekabi (Editors), Elsevier Science Publishers BV, Amsterdam, 1993, ISBN 0-444-89855-7, xiv + 820 pp., f450.00/$257.25. Appl. Catal. B Environ. 1993, 3, N22–N23. [Google Scholar] [CrossRef]
Koshlak, H.
Basok, B.
Pavlenko, A.
Hrabova, T.
Opryshko, V. The Thermophysical Aspects of the Transformation of Porous Structures in Versatile Nanostructured Materials. Sustainability 2024, 16, 2673. [Google Scholar] [CrossRef]
Schneider, J.
Matsuoka, M.
Takeuchi, M.
Zhang, J.
Horiuchi, Y.
Anpo, M.
Bahnemann, D.W. Understanding TiO2Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
Pavlenko, A.M.
Basok, B.I.
Avramenko, A.A. Heat Conduction of a Multi-Layer Disperse Particle of Emulsion. Heat Transf. Res. 2005, 36, 55–61. [Google Scholar] [CrossRef]
Salustiano, V.C.
Andrade, N.J.
Brandão, S.C.C.
Azeredo, R.M.C.
Lima, S.A. Microbiological air quality of processing areas in a dairy plant asevaluated by the sedimentation technique and a one-stage air sampler. Braz. J. Microbiol. 2003, 34, 255–259. [Google Scholar] [CrossRef]
Napoli, H.
Marcotrigiano, V.
Montagna, M.T. Air sampling procedures to evaluate microbial contamination: A comparison between active and passive methods in operating theatres. BMC Public Health 2012, 12, 594–599. [Google Scholar] [CrossRef]
Pavlenko, A.M.
Usenko, B.
Koshlak, H. Analysis of thermal peculiarities of alloying with special properties. Metall. Min. Ind. 2014, 6, 15–19. [Google Scholar]