Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1286
Publikacje
Pomoc (F2)
[140790] Artykuł:

Experimental and Numerical Studies of “Wood–Composite” Reinforcement in Bending Sheared Wooden Beams Using Pre-Stressed Natural and Artificial Fibers

Czasopismo: Materials   Tom: 2025, Zeszyt: 18(18), 4418, Strony: 1-20
ISSN:  1996-1944
Opublikowano: Wrzesień 2025
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Agnieszka Wdowiak-Postulak orcid logo WBiAKatedra Wytrzymałości Materiałów i Konstrukcji BudowlanychTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3246.6746.66  
Grzegorz Świt orcid logo WBiAKatedra Wytrzymałości Materiałów i Konstrukcji BudowlanychTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3246.6746.66  
Aleksandra Krampikowska orcid logo WBiAKatedra Wytrzymałości Materiałów i Konstrukcji BudowlanychTakzaliczony do "N"Inżynieria lądowa, geodezja i transport3246.6746.66  
Luong Minh Chinh Niespoza "N" jednostki04.00.00  

Grupa MNiSW:  Publikacja w czasopismach wymienionych w wykazie ministra MNiSzW (część A)
Punkty MNiSW: 140


Pełny tekstPełny tekst     DOI LogoDOI    
Keywords:

glued laminated beams  structures made of wood and wood-based materials  shear bending  reinforcement  pre-stressing  natural and man-made bars  FEM 



Abstract:

Recent studies have confirmed the effectiveness of using natural fibers and fiber-reinforced polymer (FRP) composites as methods to improve the mechanical properties of timber structures. This improvement is particularly evident in static and dynamic flexural and shear performance. Moreover, there is a paucity of literature pertaining to numerical models that predict the non-linear behaviour of low-quality timber beams reinforced with natural and man-made fibers. The present article expounds upon a shear bending study of timber beams reinforced with bars in addition to other materials. The experimental study yielded the following findings: the best properties were obtained with hybrid reinforcement, in comparison to the reference beams. The enhancement of load-bearing capacity and stiffness for beams that have been reinforced with pre-stressed basalt bars was found to be the most advantageous, with increases of approximately 17% and 8%, respectively. Natural fibers exhibited slightly lower values, with an increase in load-bearing capacity and stiffness of approximately 14% and 3%, respectively, when compared to beams that had not been reinforced. Moreover, the numerical analyses yielded analogous results to those obtained from the experimental study. The numerical models thus proved to be a valid tool with which to study the influence of the reinforcement factor.



B   I   B   L   I   O   G   R   A   F   I   A
1. Rudziński, L. Konstrukcje Drewniane. Naprawy, Wzmocnienia, Przykłady Obliczeń
Kielce University of Technology Publishing House: Kielce, Poland, 2010.
2. Kia, L.
Valipour, H.R.
Ghanbari-Ghazijahani, T. Experimental and numerical investigation of concentric axial loading on bar-reinforced composite timber columns at a large scale. Structures 2024, 60, 105920.
3. Green, M.
Karsh, J.E. Tall Wood-The Case for Tall Wood Buildings
Wood Enterprise Coalition: Vancouver, BC, Canada, 2012.
4. Hein, C. Developing hybrid timber construction for sustainable tall buildings. CTBUH J. 2014.
5. Skidmore, O. Timber Tower Research Project
SOM, LLP: Chicago, IL, USA, 2013.
6. Sanner, J.
Fernandez, A.
Foster, R. River Beech Tower: A Tall Timber Experiment. CTBUH J. 2017, 2017, 40–46.
7. Orfeo, B.
Trujillo, F.
Corral, M.
Todisco, L. Analytical and experimental response of timber joists strengthened with an ex-ternal underslung post-tensioned system. Eng. Struct. 2024, 308, 118001.
8. Valluzzi, M.R.
Garbin, E.
Modena, C. Flexural strengthening of timber beams by traditional and innovative techniques. J. Build. Apprais. 2007, 3, 125–143. https://doi.org/10.1057/palgrave.jba.2950071.
9. Wdowiak-Postulak, A. Numerical, theoretical and experimental models of the static performance of timber beams reinforced with steel, basalt and glass pre-stressed bars. Compos. Struct. 2023, 305, 116479. https://doi.org/10.1016/j.compstruct.2022.116479.
10. Wdowiak-Postulak, A. Natural Fibre as Reinforcement for Vintage Wood. Materials 2020, 13, 4799. https://doi.org/10.3390/ma13214799.
11. Wdowiak-Postulak, A. Ductility, load capacity and bending stiffness of Scandinavian pine beams from waste timber strengthened with jute fibres. Drewno. Pr. Nauk. Doniesienia Komun. = Wood. Res. Pap. Rep. Announc. 2022, 65. https://doi.org/10.12841/wood.1644-3985.417.01.
12. Wdowiak-Postulak, A.
Gocál, J.
Bahleda, F.
Prokop, J. Load and Deformation Analysis in Experimental and Numerical Stud-ies of Full-Size Wooden Beams Reinforced with Prestressed FRP and Steel Bars. Appl. Sci. 2023, 13, 13178. https://doi.org/10.3390/app132413178.
13. Wdowiak-Postulak, A. Basalt Fibre Reinforcement of Bent Heterogeneous Glued Laminated Beams. Materials 2020, 14, 51. https://doi.org/10.3390/ma14010051.
14. Wdowiak-Postulak, A.
Świt, G.
Dziedzic-Jagocka, I. Application of Composite Bars in Wooden, Full-Scale, Innovative Engi-neering Products—Experimental and Numerical Study. Materials 2024, 17, 730. https://doi.org/10.3390/ma17030730.
15. Halicka, A.
Ślósarz, S. Strengthening of timber beams with pretensioned CFRP strips. Structures 2021, 34, 2912–2921. https://doi.org/10.1016/j.istruc.2021.09.055.
16. Yang, H.
Liu, W.
Lu, W.
Zhu, S.
Geng, Q. Flexural behavior of FRP and steel reinforced glulam beams: Experimental and theoretical evaluation. Constr. Build. Mater. 2016, 106, 550–563. https://doi.org/10.1016/j.conbuildmat.2015.12.135.
17. Bulleit, W.M.
Sandberg, L.B.
Woods, G.J. Steel-reinforced glude laminated timber. J. Struct. Eng. 1989, 115, 433–444. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:2(433).
18. Neves, L.C.
Giongo, I. Retrofitting of traditional timber floors, Reinforcement of timber elements in existing structures: State-of-the-Art Report of the RILEM TC 245-RTE, 978-3-030-67794-7
Springer International Publishing: Cham, Switzerland, 2021
pp. 221–245. https://doi.org/10.1007/978-3-030-67794-7_11.
19. Chen, G.
Wang, Y.
Yang, S. Elliptical FRP–concrete–steel double-skin tubular columns under cyclic compression: Fundamen-tal characteristics and modeling. Eng. Struct. 2025, 326, 119517. https://doi.org/10.1016/j.engstruct.2024.119517.
20. Almutairi, A.D.
Bai, Y.
Wang, Y.
Jeske, J. Mechanical performance of fibre reinforced polymer confined softwood timber for pole applications. Compos. Struct. 2020, 235, 111807.
21. Ye, L.
Wang, B.
Shao, P. Experimental and Numerical Analysis of a Reinforced Wood Lap Joint. Materials 2020, 13, 4117. https://doi.org/10.3390/ma13184117.
22. Fiorelli, J.
Dias, A.A. Glulam beams reinforced with FRP externally-bonded: Theoretical and experimental evaluation. Mater. Struct. 2011, 44, 1431–1440.
23. Dewey, J.
Burry, M.
Tuladhar, R.
Sivakugan, N.
Pandey, G.
Strengthening, D. Strengthening and rehabilitation of de-teri-orated timber bridge girders. Constr. Build. Mater. 2018, 185, 302–309.
24. Bergner, K.
Tosch, M.
Zauer, M.
Spickenheuer, A.
Wagenfuehr, A.
Heinrich, G. Process development for the manufacture of fiber reinforced wood composites (FRWC). Constr. Build. Mater. 2018, 180, 275–284.
25. Qin, S.W. Experimental Study of Wood Beams Strengthening with SLAP Tenon Joint by FRP. Master’s Thesis, Yangzhou University, Yangzhou, China, 2015. (In Chinese)
26. Li, H.M.
Qiu, H.X.
Zhao, Z.
Lu, Y. Experimental study on splice-jointed timber columns reinforced with steel jackets. J. Cent. South Univ. (Sci. Technol.) 2018, 49, 192–200.
27. Makhlouf, M.H.
Abdel-kareem, A.H.
Mohamed, M.T.
El-Gamal, A. Experimental and numerical study of shear strength-ening of reinforced concrete beams using jute fiber reinforced polymers (JFRP). J. Build. Eng. 2024, 86, 108732. https://doi.org/10.1016/j.jobe.2024.108732.
28. Jemaa, Y.
Yeboah, D.
Gkantou, M. Flexural performance of glulam timber beams with glued-in BFRP rods connections. Constr. Build. Mater. 2024, 443, 137628.
29. Wang, C.
Du, Z.
Zhang, Y.
Li, L.
Ma, Z. Meso-structural insights into post-peak behaviors of micro steel fiber-reinforced recycled aggregate concrete using in-situ 4D CT and DVC techniques. J. Build. Eng. 2025, 100, 111674. https://doi.org/10.1016/j.jobe.2024.111674.
30. Wang, C.
Yuan, J.
Zhang, Y.
Wu, H.
Ma, Z. Advanced in-situ 4D CT reconstruction for exploring fiber distribution effects on the mechanical behaviors and interface optimization of carbonated high-toughness recycled aggregate concrete. Constr. Build. Mater. 2025, 473, 140941. https://doi.org/10.1016/j.conbuildmat.2025.140941.
31. Li, H.M.
Lam, F.
Qiu, H.X. Flexural performance of spliced beam connected and reinforced with self-tapping wood screws. Eng. Struct. 2017, 152, 523–534.
32. Jensen, J.L.
Gustafsson, P.J. Shear strength of beam splice joints with glued-in rods. J. Wood. Sci. 2004, 50, 123–129.
33. Taheri, F.
Nagaraj, M.
Khosravi, P. Buckling response of glue-laminated columns reinforced with fiber-reinforced plastic sheets. Compos. Struct. 2009, 88, 481–490.
34. Ghanbari Ghazijahani, T.
Jiao, H.
Holloway, D. Rectangular steel tubes with timber infill and CFRP confinement under com-pression: Experiments. J. Constr. Steel Res. 2015, 114, 196–203.
35. Hu, Q.
Gao, Y.
Meng, X.
Diao, Y. Axial compression of steel–timber composite column consisting of H-shaped steel and glulam. Eng. Struct. 2020, 216, 110561.
36. Kia, L.
Valipour, H.R. Composite timber-steel encased columns subjected to concentric loading. Eng. Struct. 2021, 232, 111825.
37. Osman, A.
Aboshok, M.
Hamdy, G.A.R.
El-Mahdy, O.O. Nonlinear Finite Element Modeling of Wooden Elements Strengthened by FRP. Eng. Res. J. 2024, 53, 110–118.
38. Ganda, A.K.
Yeboahb, D.
Khoramia, M.
Olubanwo, A.O.
Lumor, R. Behaviour of strengthened timber beams using near surface mounted Basalt Fibre Reinforced Polymer (BFRP) rebars. Eng. Solid Mech. 2018, 6, 341–352.
39. Kim, Y.J.
Harries, K.A. Modeling of timber beams strengthened with various CFRP composites. Eng. Struct. 2010, 32, 3225–3234.
40. PN-D-94021:2013-10
Structural Softwood Lumber Graded by Strength Methods. Polish Committee for Standardization: Warsaw, Poland, 2013.
41. PN-EN 408+A1:2012
Timber Structures—Structural Solid and Glued Laminated Timber—Determination of Certain Physical and Mechanical Properties. Polish Committee for Standardization: Warsaw, Poland, 2012.
42. PN-EN 14080:2013-07
Timber Structures—Glued Laminated Timber and Solid Laminated Timber–Requirements. Polish Committee for Standardization: Warsaw, Poland, 2013.
43. Available online: https://www.sp-reinforcement.pl/pl-PL/produkty/sp-resin-55-hp (accessed on 30 March 2019).
44. Wdowiak-Postulak, A.
Kawecki, B. Investigations on structural‑sized GLT beams reinforced with steel and FRP composite bars: Experimental tests and nonlinear numerical approach. Arch. Civ. Mech. Eng. 2025, 25, 80. https://doi.org/10.1007/s43452-025-01123-8.
45. Forest Products Laboratory. Wood handbook: Wood as an engineering material, General Technical Report FPL-GTR-282
U.S. De-partment of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 2021
543p.
46. Raftery, G.M.
Kelly, F. Basalt FRP rods for reinforcement and repair of timber. Compos. Part B Eng. 2015, 70, 9–19.
47. Gentile, C.
Svecova, D.
Rizkalla, S.R. Timber beams strengthened with GFRP Bars: Development and application. J. Compos. Constr. 2002, 6, 11–20.