Notice: Undefined index: linkPowrot in C:\wwwroot\wwwroot\publikacje\publikacje.php on line 1275
Publikacje
Pomoc (F2)
[84120] Artykuł:

An algebraic model of the subsystem for the computer generation of elimination operation

Czasopismo: Measurement Automation Monitoring   Tom: 64, Zeszyt: 03, Strony: 48-52
ISSN:  2450-2855
Opublikowano: Marzec 2018
 
  Autorzy / Redaktorzy / Twórcy
Imię i nazwisko Wydział Katedra Do oświadczenia
nr 3
Grupa
przynależności
Dyscyplina
naukowa
Procent
udziału
Liczba
punktów
do oceny pracownika
Liczba
punktów wg
kryteriów ewaluacji
Volodymyr Ovsyak orcid logo WEAiIKatedra Systemów Informatycznych *Takzaliczony do "N"Automatyka, elektronika, elektrotechnika i technologie kosmiczne2511.002.75  
Oleksandr Ovsyak Niespoza "N" jednostki25.00.00  
Mykhaylo KOZELKO Niespoza "N" jednostki25.00.00  
Julia PETRUSHKA Niespoza "N" jednostki25.00.00  

Grupa MNiSW:  Publikacja w recenzowanym czasopiśmie wymienionym w wykazie ministra MNiSzW (część B)
Punkty MNiSW: 11


Pełny tekstPełny tekst    
Keywords:

Algorithm of algebra  algebraic methods  algebraic model of  operation  elimination operation  graph of subsystem  diagram of  sequences. 



Abstract:

A brief analysis of the known methods of non-algebraic and algebraic
descriptions of algorithms has been presented. The features of the
elimination operation being a term of the algorithm algebra have been
shown. An algebraic model of the computer generation of the elimination
operation has been synthesized by means of the algorithm algebra. The
model has been implemented with the help of software on the platform
Microsoft Visual Studio .NET. The models of subsystem as a graph and a
diagram of sequences have been designed as well.



B   I   B   L   I   O   G   R   A   F   I   A
[1] Kleene S.C.: Origins of Recursive Function Theory. Annals of the
Theory of Computing. 1981, vol. 3, no. 1, pp. 52–67.
[2] Church A.: An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 1936, vol. 58, pp. 345–363.
[3] Turing A.M.: On Computable Numbers, with an Application to the
Entscheidungsproblem. Proc. of LMS, 1936, ser. 2, vol. 42, no. 3, 4,
pp. 230–265.
[4] Post E.L.: Finite Combinatory Processes – Formulation I. JSL, 1936,
vol. 1, no. 3, pp. 103–105.
[5] Kolmogorov A.N.: On the Definition of Algorithm (in Russian).
Uspekhi Mat. Nauk, 1958, vol. 13:4, pp. 3-28 (translated into English
in AMS Translations 29, pp. 217–245, 1963).
[6] Schönhage A.: Storage Modification Machines. SIAM Journal on
computing, 1980, vol. 9, no. 3, pp. 490–508.
[7] Aho A.V., Hopcroft J.E., Ullman J.D.: The Design and Analysis
of Computer algorithms. Addison-Wesley Publishing Company,
1974.
[8] Markov A.A., Nagorny N.M.: The Theory of Algorithms
(Mathematics and its Applications), 2001, Springer.
[9] Krinitski N.A.: Algorithms around Us. Moscow, Nauka, 223 p. (in
Russian), 1984.
[10] Glushkov V.: Automata Theory and Formal Transformations of
Microprograms. Cybernetics, 1965, no. 5, pp. 1–9 (in Russian).
[11] Glushkow W.M., Zeitlin G.E., Justchenko J.L.: Algebra. Sprachen.
Programmierung. Berlin: Akademie-Verlag, 1980, 340 p.
[12] Zeitlin G.E.: The Algebraic Algorithmics: The Theory and
Applications. Cybernetics and Systems Analysis, 2003, no. 1, pp. 8–
18 (in Russian).
[13] Zeitlin G.E. Elements of Algebraic Algorithmics and Algorithmic
Oriented Synthesis of Parallel Programs. Mathematical Machines and
Systems, 2003, no. 2, pp. 56–67 (in Russian).
[14] Pogorilyy S.D.: A Conception for Creating a System of Parametric
Design for Parallel Algorithms and Their Software Implementations.
Cybernetics and System Analysis, 2009, vol. 45, no. 6, pp. 952–958.
[15] Redko V.N.: Primitive Program Algebras. Cybernetics, 1984, no. 4,
pp. 1–7 (in Russian).
[16] Redko V.N.: Primitive Program Algebras of Functions of Rational
Arguments and Values. Reports of the Academy of Sciences of the
USSR. Ser. A. Physical and mathematical and engineering sciences,
1986, no. 6, pp. 65–67 (in Russian).
[17] Redko V.N.: Primitive Program Algebras of Integer and Lexical
Functions. Reports of the Academy of Sciences of the USSR. Ser. A.
Physical and mathematical and engineering sciences, 1984, no. 10, pp.
69–71 (in Russian).
[18] Redko V.N.: Primitive Program Algebras of Functions, which
Arguments and Values are Vectors, Relations and Matrix. Reports of
the Academy of Sciences of the USSR. Ser. A. Physical and
mathematical and engineering sciences, 1987, no. 7, pp. 3–5
(in Russian).
[19] Redko V.N.: Primitive Program Algebras of Computable Functions.
Cybernetics, 1987, no. 3, pp. 68–74 (in Russian).
[20] Gubskiy B.V.: Primitive Program Algebras of Computable Functions
and Predicates on Relations and Tables in the Final and Countable
Alphabets. Reports of the Academy of Sciences of the USSR. Ser. A.
Physical and mathematical and engineering sciences, 1988, no. 10,
78–79 (in Russian).
[21] Ovsyak V.K.: The Tools for Equivalent Transformations of
Algorithms of Information-Technology Systems. Reports of National
Academy of Ukraine, 1996, no. 9, pp. 83–89 (in Ukrainian).
[22] Owsiak W.: Rozszerzenie algebry algorytmów. Pomiary, Automatyka,
Kontrola, 2010, no. 2, pp. 184–188.
[23] Owsiak A.: Algebraic Models of Subsystems of Abstract System with
the User Interface. Pomiary, Automatyka, Kontrola, 2013, no. 11, pp.
1179–1182.
[24] Nagel C., Evjev B., Glynn J., Watson K., Skinner M.: C# 2012 and
.NET 4.5. 2013, Wiley Publishing, Inc.
[25] Powers L., Snell M.: Microsoft Visual Studio 2010. 2011.
[26] Ovsyak V.: A sequential method for the synthesis of formulae of
algorithms. Measurement Automation Monitoring, Jan. 2015, vol. 61,
no. 01, pp. 21–23.